مدل‌سازی و طراحی پیش‌طرح سامانه گردآورنده خورشیدی تخت هوایی به‌منظور تأمین گرمایش انبار خشک‌کن غلات: مطالعه موردی ذرت دانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آموزشی مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز

چکیده

چکیده
یکی از کاربرد‌های سامانه‌های خورشیدی در بخش کشاورزی استفاده برای خشک‌کردن محصولات تولیدی است. خشک‌­کردن محصولات کشاورزی در مرحله‌ پس از برداشت یکی از عملیات مهم با هدف افزایش طول زمان انبارداری و حفظ سلامت محصولات در این دوره است. هدف این پژوهش مدل‌سازی و طراحی جمع‌کننده تخت هوایی به‌منظور تأمین انرژی انبار خشک‌کردن غلات با مساحت 36 مترمربع و با فرض داشتن 5/1 تن ظرفیت ذرت دانه‌ای­برای هر بارگذاری بود. مقدار انرژی لازم برای کاهش رطوبت محصول از 23 به 13 درصد، 1/931 مگاژول بر 5/1 تن دانه محاسبه شد. برای تأمین این مقدار انرژی، مدل‌سازی گردآورنده تخت هوایی در دو نوع A (بدون منحرف‌کننده) و B (با نصب منحرف‌کننده در کانال هوا) توسط کدنویسی در متلب انجام شد. به­کارگیری منحرف‌کننده‌ها در کانال هوا افزایش بازدهگرمایی گردآورنده از 37 ­به 55 درصد در نوع تک پوشش (پوشش شیشه‌ای) و از 48 به 62 درصد در نوع دو پوشش را سبب شد. میانگین بهترین زاویه شیب نصب گردآورندهاز طریق کدنویسی در متلب، 5/27 درجه نسبت به افق و به سمت جنوب، محاسبه گشت. زمان تأمین انرژی موردنیاز (1/961 مگاژول بر 5/1 تن) برای سامانه خورشیدی با مساحت 30 مترمربع، در گردآورنده نوع A و B، به‌ترتیب 25/41 و 69/27 ساعت در تک پوشش و 14/31 و 1/24 ساعت در دو پوشش محاسبه شد.
 

 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Designing of a Primary Plan for a Solar Flat Plate Air Collector to Provide the Necessary Heat for a Cereal Dryer: Case Study, Corn Grain

نویسندگان [English]

  • ali deliran
  • yahya ajabshirchi
  • shamsolah abdolahpour
Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Abstract
One of the applications of solar systems in agriculture is in product dryers. Drying of agricultural products after harvesting stage is one of the major units operations in order to increase the length of storage and maintain its quality. The purpose of this research is to model and design a solar flat plate air collector in order to supply the energy need of a grain drying warehouse with an area of 36 square meters and assumed capacity of 1.5 tons of corn for each loading. The amount of the required energy to reduce the moisture content of corn (from 23% to 13%)  was calculated as 961.1 MJ/1.5 tons. To provide this amount of energy, two types of collectors, type A (without obstacle) and type B (with obstacle installation in the air channel) were analyzed by Matlab code. The use of obstacles in the air channel increased the thermal efficiency of the collector from 37 to 55 percent in the single cover type and from 48 to 62 percent in the double cover type. The average of the best tilt angle of the collector installation was recorded at 27.5 degrees in south direction. The required energy supply time (961/1 MJ/1.5 tons) for a solar system with an area of 30 square meters, for A and B type collectors was calculated as 41.25 and 27.69 hours in single cover and, 31.14 and 24.1 hours in two cover, respectively.
 

کلیدواژه‌ها [English]

  • Keywords: Corn
  • Energy
  • Solar collector
  • Solar dryer
  • Tilt angle
عجب‌شیرچی، ی. و صادقی، ن. 1394. تحلیل تجربی اثر زاویه شیب و تعداد پوشش کلکتور آبی خورشیدی بر روی اصلاح بازدهی انرژی. پایان‌نامه کارشناسی ارشد مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز.
عجب‌شیرچی، ی. و بشیری، ع. 1394. اصلاح بازدهی انرژی دو نوع کلکتور خورشیدی تخت هوائی با به­کار بردن منحرف‌کننده‌های قوسی شکل و پوشش شیشه‌ای دوجداره. پایان‌نامه کارشناسی ارشد مهندسی مکانیزاسیون کشاورزی، دانشکده کشاورزی، دانشگاه تبریز.
عجب‌شیرچی، ی. و جاهد، س. 1392. بهینه‌سازی انرژی یابی دو نوع کلکتور خورشیدی هوا با به‌کارگیری منحرف‌کننده‌های ذوزنقه‌ای شکل. پایان‌نامه کارشناسی ارشد مهندسی مکانیزاسیون کشاورزی، دانشکده کشاورزی، دانشگاه تبریز.
Abhay Lingayat,V. R. K. R. and Chandramohan, V.P. 2018. Numerical analysis on solar air collector provided with artificial square shaped roughness for indirect type solar dryer. Journal of Cleaner Production, Vol. 190, pp. 353–367.
Ajam, H., Farahat, S. and Sarhaddi, F. 2005. Exergetic optimization of solar air heaters and comparison with energy analysis. International Journal of Thermodynamics, Vol. 8, No. 4, pp. 183–190.
Abdullahi, Y., Momoh, M., Garba, M. M. and Musa, M. 2013. Design and Construction of an Adjustable and Collapsible Natural Convection Solar Food Dryer. International Journal of Computational Engineering Research, Vol. 3, No. 6, pp. 1–8.
Bagheri, N., Keyhani, A., Mohtasebi, S. S., Alimardani, R., Rafiee, S. and Mansoori, G. H. 2011. Design, construction and evaluation of a fan speed controller in a forced convection solar dryer to optimize the overall energy efficiency. Journal of Agricultural Science and Technology, Vol. 13, No. 4, pp. 503–515.
Chabane, F., Moummi, N., Benramache, S., Bensahal, D. and Belahssen, O. 2013. Effect of artificial roughness on heat transfer. Journal of Science and Engineerin, Vol. 1, pp. 85–93.
Camelia Stanciu, D. S. 2014. Optimum tilt angle for flat plate collectors all over the world- A declination dependence formula and comparisons of three solar radiation models. Energy Conversion and Management, Vol. 81, pp. 133–143.
Da Silva Almeida, R. L., Garofalo Cavez, L. H. and Da Silva, E. F. 2012. Growth of Cocoa as Function of Fertigatin with Nitrogen. Iranica Journal of Energy & Environment, Vol. 3, No. 4, pp. 348–354.
Deshmukh, a. W., Varma, M. N., Yoo, C. K. and Wasewar, K. L. 2014. Investigation of Solar Drying of Ginger (Zingiber officinale): Emprical Modelling, Drying Characteristics, and Quality Study. Chinese Journal of Engineering, Vol. 2014, pp. 1–7.
Duffie, J., and Beckman, W.. 1976. Solar engineering of thermal processes. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Folaranmi, J. 2008. Design, construction and testing of simple solar maize dryer, Leonardo Electron. Leonardo Electronic Journal of Practices and Technologies, Vol. 7, No. 13, pp. 122–130.
Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y.  and Ruslan, M. H. 2015. Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1191–1204.
Gatea, A. 2010. Design, construction and performance evaluation of solar maize dryer. Journal of Agricultural Biotechnology and Sustainable Development Vol, vol. 2, no. March, pp. 39–46.
Gavhale, M., Kawale, S., Nagpure., R., Mujbaile., V. N. and Sawarkar, N. S. 2015. Design And Development Of Solar Seed Dryer. IJISET -International Journal of Innovative Science, Engineering & Technology, Vol. 2, No. 4, pp. 1005–1010.
Gopi, R. 2017. Experimental investigation of flat plate collector with cylindrical fins in a solar air heater. Journal of Industrial Pollution Control, Vol. 33, No. 2, pp. 1128–1131.
Ho, C. D., Yeh, H. M., Cheng, T. W., Chen., T. C. and Wang, R. C. 2009. The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached. Applied Energy, Vol. 86, No. 9, pp. 1470–1478.
Ho, C. D., Yeh., H. M. and Chen, T. C. 2011. Collector efficiency of upward-type double-pass solar air heaters with fins attached. International Communications in Heat and Mass Transfer, Vol. 38, No. 1, pp. 49–56.
Hanif, Kh. M., Ramzan., M. , Rahman, M.  and Amir, M. 2012. Growth of cocoa as function of fertigatin with nitrogen. Iran. J. Energy Environment., Vol. 3, No. 4, pp. 380–384.
Kalogirou, S. A. 2014. Solar energy engineering: processes and systems. Second ed., Elsevier, p. 813.
Mohammadi, K. and Sabzpooshani, M. 2013.Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate. Energy, Vol. 57, pp. 741–750.
Murthy, M. 2009. A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustainable Energy Reviews 13: 835-844.
Othman, M. Y. H., Hussain, F., Sopian, K.,  Yatim, B. and Ruslan, H. 2013. Performance study of air-based photovoltaic-thermal (PV/T) collector with different designs of heat exchanger. Sains Malaysiana, Vol. 42, No. 9, pp. 1319–1325.
Prasad, B. N. and Saini, J. S. 1988. Effect of artificial roughness on heat transfer and friction factor in a solar air heater, Solar Energy, vol. 41, no. 6, pp. 555–560.
Priyam, A. and Chand, P. 2016. Influence of channel depth on the performance of solar air heaters. Energy, Vol. 35, No. 10, pp. 4201–4207.
Pabis, S., Jayas, D. S. and Cenkowski, S. 1998. Grain drying : theory and practice. John Wiley, p. 303.
Ramadhani, B. 2015. Experimental analysis of air flow patterns in perfomance of flat plate solar collectors. African journal of agricultural research, Vol. 10, No. 6, pp. 524–533.
Sahay, K. M. and Singh, K. K. 2004. Unit operations of agricultural processing. Vikas Publishing House Pvt Limited.
Sekhar, Y. R., Sharma, K. V. and Rao. M. B. 2009. Evaluation of heat loss coefficients in solar. Vol. 4, No. 5, pp. 15–19.
Shojaeizadeh, E., Veysi, F.  and Kamandi, A. 2015. Exergy efficiency investigation and optimization of an Al2 O3–water nanofluid based Flat-plate solar collector. Energy Build, Vol. 101, pp. 12–23.
Soi, A., Singh., R. and Bhushan, B. 2010. Effect of roughness element pitch on heat transfer and friction characteristics of artifical roughened solar air heater duct. International Journal of Engineering Science and Technology, Vol. 1, No. 3, pp. 339–346.
Strumiłło, C. and Kudra, T. 1986. Drying : principles, applications, and design. Gordon and Breach Science Publishers, p. 448.
Tiwari, A. 2016. A Review on Solar Drying of Agricultural Produce. Journal of Food Processing & Technology, Vol. 7, No. 9.
Tang, R. and Wo., T. 2004.Optimal tilt-angles for solar collectors used in China. Applied Energy. vol. 79, pp. 239–248.
Tonui, K. S., Mutai, E. B. K., Mutuli, D. A., Mbuge, D. O. and Too, K. V. 2014. Design and evaluation of solar grain dryer with a back-up heater. Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 15, pp. 3036–3043.
Topic, R. M., Nenad Lj, C. and Milan, R. 2013. Muechas−Design and Construction of An Active Solar Dryer for Biological Materials. International Journal of Mechanical Engineering and Applications, vol. 1, no. 2, p. 49.
Vyas, S., and Punjabi, S. 2014. T Hermal Performance Testing of a Flat Plate Solar Air Heater Using Optical Measurement Technique. International Journal of Recent advances in Mechanical Engineering (IJMECH) Vol.3, No.4, November 2014, Vol. 3, No. 4, pp. 69–84.
Yeh, H., Ho., C. and Lin, C.  2000. Effect of collector aspect ratio on the collector eficiency of upward type bafled solar air heaters. Energy Conversion and Management, Vol. 41, pp. 971–981.
Yeh, H. M. and Ho, C. D.  2013. Collector efficiency in downward-type internal-recycle solar air heaters with attached fins. Energies, Vol. 6, No. 10, pp. 5130–5144.