طراحی، ساخت و ارزیابی افشانک کمک هوا برای سمپاش بوم دار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی ماشین های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

2 دانش‌آموخته رشته مهندسی ماشین‌های کشاورزی و مکانیزاسیون ، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

چکیده

چکیده
سم­پاشی یکی از عملیات مهم برای مبارزه با عوامل زنده کاهش تولید در محصولات کشاورزی است. با توجه به­بالابودن هزینه­های سم­پاشی و مسائل زیست­محیطی ناشی از آن، مدیریت مناسب در این زمینه ضروری است. در این میان کاهش بادبردگی افشانک می­تواند علاوه­ بر کاهش هدر رفت سموم و یک­نواختی مناسب پاشش، از عمده­ترین عامل مؤثر در پیش­گیری از خطر ابتلا به­آلودگی زیست محیطی با آفت­کش­ها باشد. برای این منظور، پس از طراحی اولیه، ساخت و ارزیابی افشانک کمک هوا در سم­پاش بوم­دار، به­صورت آزمون فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در دانشگاه کشاورزی و منابع طبیعی رامین خوزستان انجام شد. آزمایش­ها با سه نوع افشانک کمک هواشاملافشانک نوع اول: هوا- مایع- هوا (ALA)، افشانک نوع دوم: مایع (LA)، افشانک نوع سوم: مایع- هوا- مایع (LAL)، چهار سطح سرعت جریان کمک هوا (0، 2، 4 و 5/7 متر بر ثانیه) و چهار سطح سرعت باد (0، 2، 3 و 4 متر بر ثانیه) مورد بررسی قرار گرفتند. با استفاده از یک دستگاه اسپکتروفتومتری، نرم افزار MATLAB، SAS 9.1 و EXEL آزمون دانکن در سطح یک درصد و هم­چنین آزمون برش­دهی، میزان بادبردگی، میزان نشست محلول سم، یک­نواختی در پاشش، قطر میانه حجمی 50 و 90 درصد، قطر میانه عددی و شاخص کیفیت پاشش محاسبه شد. نتایج تجزیه واریانس به­دست آمده حاکی از آن بودند که اثر نوع افشانک، سرعت کمک هوا و سرعت باد بر میزان نشست محلول سم، میزان بادبردگی، یک­نواختی در پاشش، قطر میانه حجمی 50 و 90 درصد و هم­چنین شاخص کیفیت در سطح 1 درصد معنی­دار بود. نتایج نشان دادند که افشانک سوم  با سرعت کمک هوا و سرعت باد 4 متر بر ثانیه به­ترتیب با 87/144 لیتر بر هکتار و 06/0 درصد بیش­ترین و کم­ترین میزان نشست محلول سم و میزان بادبردگی را به خود اختصاص داد. در حالی که کم­ترین و بیش­ترین میزان نشست محلول سم و میزان بادبردگی به­ترتیب با 16/31 لیتر بر هکتار و 69/0 درصد، مربوط به افشانک سوم  بدون کمک هوا (شاهد) در سرعت باد 2 متر بر ثانیه بود. کم­ترین ضریب تغییرات (بیش­ترین یک نواختی در پاشش) با 42/0 درصد مربوط به افشانک سوم با کمک هوا و سرعت باد 4 متر بر ثانیه، اما بیش­ترین ضریب تغییرات (کم­ترین یک­نواختی در پاشش) با 08/4 درصد مربوط به افشانک اول با کمک هوای 5/7 متر بر ثانیه ولی بدون سرعت باد به­دست آمد.
 

کلیدواژه‌ها


پیمان، ل.، عبداله­پور، ش.، رعنابناب، ب. و محمودی، الف. 1390. بررسی عوامل موثر در یک نواختی اندازه قطرات سم با استفاده از معیار cv. اولین کنگره ملی علوم و فن­آوری­های نوین کشاورزی دانشگاه زنجان (محور گیاه پزشکی). ص4.
سریواستاوا، الف.، گورینگ، ک. و رورباک، ر. 1386. ترجمه منصور بهروزی­لار و حسین مبلی، اصول طراحی ماشین­های کشاورزی. انتشارات دانشگاه آزاد اسلامی تهران. چاپ دوم. ص 702.
فتاحی، ح.، عبدالله­پور، ش.، اسماعیل­زاده، الف و مقدم­واحد م. 1393. ارائه و ارزیابی یک مدل تجربی برای بادبردگی افشانک­های بادبزنی در تونل باد به کمک پردازش تصویر. نشریه ماشین­های کشاورزی. (2) 4. ص 274-266
Al Heidary, M., Douzals, J.P., Sinfort, C. and Vallet, A. 2014. Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel. International Conference of Agricultural Engineering Journal. Pp: 1-7.
Arvidsson, T., Bergström, L. and Kreuger, J. 2011. Spray drift as influenced by meteoro-logical and technical factors. Pest Manag   Journal. Sci. 67. Pp: 586–598.
Balsari, P., Gil, E., Marucco, P., Gallart, M., Bozzer, C., Liop, C. and Tamagnone, M. 2014. Study and development of a test methodology to assess potential drift generated by air-assisted sprayers. Di SAFA Crop protection Journal Aspects of Applied Biology. 122. Pp: 339-346.
Bayat, A. and Bozdogan, N. Y. 2005. An air-assisted spinning disc nozzle and its performance on spray deposition and reduction of drift potential. Crop Protection Journal. 24. Pp: 651-960.
Deveau, J. 2009. Six elements of effective spaying in orchards and vineyards. Ministry of agriculture. Food and rural affairs Journal. 605 (09-039). Pp: 1-9.
Fabio S., Carlos, G. R. 2006. Spray deposition and losses in potato ASA function of air assistance and sprayer boom. Since. Agricultural Journal. Vol: 63(6): 515- 521.
Gil, E., Balsari, P., Gallart, M., Llorens, J., Marucco, P., Andersen, P.G., Fàbregas, X. and Llop, J. 2014. Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Protection Journal. 56. Pp: 58–68.
Gil, E., Gallart, M., Balsari, P., Marucco, P., Almajano, M. P.and Liop, J. 2015. Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agricultural and Forest Meteorology Journal. 202. Pp: 94–101.
Gil, E., Gallart, M., Llorens, J. and Llop, J. 2012. Determination of drift potential value (DPV) for different flat fan nozzles using a horizontal drift test bench. International Conference of Agricultural Engineering Journal. 8. Pp: 6.
Gil, E., Llorens, J., Liop, J., Fabregas, X. and Gallart, M. 2013. Use of a terrestrial lidar sensor for drift detection in vineyard spraying. Sensors Journal. 13. Pp: 516-534.
Hilz, E. and Vermeer, A.W.P. 2013. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Protection Journal. 44. Pp: 75-83.
Kennedy, M. C., Butler Ellis, M.C. and Miller, P.C.H. 2012. BREAM: A probabilistic bystander and resident exposure assessment model of spray drift from an agricultural boom sprayer. Computers and Electronics in Agriculture Journal. 88. Pp: 63-71.
Kufferath, A., Wende, B. and Leuckel, W. 1999. Influence of liquid flow conditions on spray characteristics of internal-mixing twin fluid atomisers. Heat Fluid Flow Journal.  Pp: 513-519.
Nuyttens, D., De Schampheleire, M., Baetens, K. and Sonck, B. 2007a. The influence of operator-controlled variables on spray drift from field crop sprayers. American Society of Agricultural and Biological Engineers Journal. 50. Pp: 1129-1140.
Nuyttens, D., Baetens, K., De Schampheleire, M., Sonck, B. 2007b. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering Journal. 97, 333-345.
Safari, M., Shamabadi, Z. and Sheikh, A. 2013. Comparison of tractor air assisted boom sprayer with conventional sprayers to control sun pests in wheat production. IJACS Journal. 5. Pp: 433-444.
Sayinci, B. and Bastaban, S. 2011. Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research. 6. Pp: 352 -362.
Singh, G., Kumar, S. S., Dixit, A., Manes, G. S. and Singh, A. 2011. Spray distribution pattern of different sprayers on cotton using droplet analyzer. Journal of research, skuast-j 10.Pp:33-40
Spanoghe, P., Van Eeckout, H., Der Meeren, P. and Steurbaut, W. 2004. Effect of adjuvants on atomization of pesticides. Atomization and Sprays Journal. 14. Pp: 511-524.
Tsay, J.R. and Liang, L.S. 2004. Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation. American Society of Agricultural and Biological Engineers Journal. 47. Pp: 1887-1897.
Van de Zande, J., Michielsen, J.M.G.P., Stallinga, H., 2007. Spray Drift and Off-fieldEvaluation of Agrochemical in the Netherlands. Plant Research International B.V., Wageningen. Report 2007-149.
Zhao, H., Xie, C.H., Maoliu, F., Xiongkui, H.E., Zhang, J. and Song, J. 2014. Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Prodoction Journal. 60. Pp: 78-82.