Fixed Bed Pyrolysis of Euphorbia Tirucalli Biomass for Bio-oil Production


1 Department of Biosystems Engineering, Shahrekord University, Shahrekord, Iran

2 Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran


Pyrolysis is a thermochemical method for biomass conversion resulting from char, bio-oil and gas. Bio-oil can be used as a valuable renewable fuel or as a chemical in various industries. Char can also be used as a solid fuel, a cheap adsorbent, and raw materials for the production of bio-char derivatives and for agricultural applications. In the present study, the biomass pyrolysis of Euphorbia tirucalli was performed in a fixed bed reactor. Pyrolysis experiments for this study were to investigate the effect of temperature (450-530 °C) on the yield of pyrolysis products. Characteristics of pyrolysis products (bio-oil and bio-char) using instrumental chemistry methods such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA) and Gas chromatography–mass spectrometry (GC/MS) was investigated. The results showed that with increasing temperature, the yield of bio-oil and gas increases and the amount of bio-char decreases. The maximum yield of bio-oil (38%) was obtained at a temperature of 530 °C. Also, the maximum yield of various gases was about 39%. The highest thoracic effusion was observed at temperatures between 250-350 °C. The resulting acidic liquid is dark in color with a combination of chemical compounds including acids, alcohols, aldehydes, furfural, furan, phenols and some aromatic substances.


Abay, B.T., Abrha, W.B., Teklehaimanot, T.G. (2017). Estimation of Biogas Production from Euphorbia tirucalli 5, 918–922.
Augustus, G., Jayabalan, M., Seiler, G.J. (2003). Alternative energy sources from plants of western ghats (Tamil Nadu, India). Biomass and Bioenergy 24, 437–444.
Avelar, B.A., Lélis, F.J.N., Avelar, R.S., Weber, M., Souza-Fagundes, E.M., Lopes, M.T.P., Martins-Filho, O.A., Brito-Melo, G.E.A. ( 2011). The crude latex of Euphorbia tirucalli modulates the cytokine response of leukocytes, especially CD4+ T lymphocytes. Rev. Bras. Farmacogn. 21, 662–667.
Bajpai, P. (2013). Biorefinery in the Pulp and Paper Industry, Biorefinery in the Pulp and Paper Industry.
Baquero, G., Esteban, B., Riba, J.-R., Rius, A., Puig, R. (2011). An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture. Biomass and bioenergy 35, 3687–3697.
Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press.
Buijs, N.A., Siewers, V., Nielsen, J. (2013). Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17, 480–488.
Elad, Y., Cytryn, E., Harel, Y.M., Lew, B., Graber, E.R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathol. Mediterr. 50, 335–349.
Frenkel, O., Jaiswal, A.K., Elad, Y., Lew, B., Kammann, C., Graber, E.R. (2017). The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J. Environ. Eng. Landsc. Manag. 25, 105–113.
Gautam, N., Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 190, 116434.
Ghorbannezhad, P., Dehghani Firouzabadi, M., Ghasemian, A.( 2018a). Catalytic fast pyrolysis of sugarcane bagasse pith with HZSM-5 catalyst using tandem micro-reactor-GC-MS. Energy Sources, Part A Recover. Util. Environ. Eff. 40, 15–21.
Ghorbannezhad, P., Firouzabadi, M.D., Ghasemian, A., de Wild, P.J., Heeres, H.J. (2018b). Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). J. Anal. Appl. Pyrolysis 131, 1–8.
Gogoi, S., Bhuyan, N., Sut, D., Narzari, R., Gogoi, L., Kataki, R. (2020). Agricultural wastes as feedstock for thermo-chemical conversion: products distribution and characterization, in: Energy Recovery Processes from Wastes. Springer, pp. 115–128.
Gonçalves, E.V., Teodoro, C., Seixas, F.L., Canesin, E.A., Olsen Scaliante, M.H.N., Gimenes, M.L., De Souza, M. (2017). Pyrolysis of sugarcane bagasse in a fixed bed reactor: Influence of operational conditions in the distribution of products. Can. J. Chem. Eng. 95, 2249–2257.
Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M., Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage. 118, 196–204.
Harel, Y. M., Elad, Y., Rav-David, D., Borenstein, M., Shulchani, R., Lew, B., Graber, E.R. (2012). Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357, 245–257.
Hassan, M.A., Ahmad Farid, M.A., Shirai, Y., Ariffin, H., Othman, M.R., Samsudin, M.H., Hasan, M.Y. (2019). Oil palm biomass biorefinery for sustainable production of renewable materials. Biotechnol. J. 14, 1800394.
Ingle, A.P., Chandel, A.K., da Silva, S.S. (2020). Biorefining of Lignocellulose into Valuable Products. Lignocellul. Biorefining Technol. 1–5.
Kapdan, I.K., Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569–582.
Khaleghian, A., Nakaya, Y., Nazari, H. (2011). Biodiesel production from Euphorbia tirucalli L. J. Med. Plant Res. 4968–4973.
Komkiene, J., Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium (II), Copper (II), Lead (II), Zinc (II)] from aqueous phase. Int. J. Environ. Sci. Technol. 13, 471–482.
Luque, R., Clark, J. (2010). Handbook of biofuels production: Processes and technologies. Elsevier.
Maache-Rezzoug, Z., Pierre, G., Nouviaire, A., Maugard, T., Rezzoug, S.A. (2011). Optimizing thermomechanical pretreatment conditions to enhance enzymatic hydrolysis of wheat straw by response surface methodology. Biomass and bioenergy 35, 3129–3138.
Mkhize, T., Mthembu, L.D., Gupta, R., Kaur, A., Kuhad, R.C., Reddy, P., Deenadayalu, N. (2016). Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse. BioResources 11, 6267–6285.
Mwine, J., Van Damme, P., Hastilestari, B.R., Papenbrock, J. (2013). Euphorbia tirucalli L.(Euphorbiaceae)–the miracle tree: current status of knowledge, in: African Natural Plant Products Volume II: Discoveries and Challenges in Chemistry, Health, and Nutrition. ACS Publications, pp. 3–17.
Qureshi, N., Hodge, D.B., Vertes, A.( 2014). Biorefineries: integrated biochemical processes for liquid biofuels. Newnes.
Rajasekaran, P., Swaminathan, K.R., Jayapragasam, M.(1989). Biogas production potential of Euphorbia tirucalli L. along with cattle manure. Biol. wastes 30, 75–77.
Rajeswari, B., Kumar, P.S., Sharma, A., Sahoo, P.K., Khan, P.S.S.V. (2013). Effect of C-5 and C-10 fuel blends of Euphorbia caducifolia Haines on IC diesel engine emissions. Int. J. Adv. Eng. Technol. 6, 1177.
Rosendahl, L. (2013). Biomass combustion science, technology and engineering. Elsevier.
Sake, K., Bugude, R., Reddy, V.L., Khan, P. (2013). Production of bioethanol from spent residues of latex yielding plants Euphorbia antiquorum L and Euphorbia caducifolia haines. Int. J. Recent Sci. Res. 4, 1–4.
Singh, R., Tiwari, S., Srivastava, M., Shukla, A.             (2014). Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. J. energy 2014.
Suriapparao, D. V, Vinu, R. (2018). Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and biomass valorization 9, 465–477.
Taghizadeh-Alisaraei, A., Hosseini, S.H., Ghobadian, B., Motevali, A. (2017). Biofuel production from citrus wastes: A feasibility study in Iran. Renew. Sustain. Energy Rev. 69, 1100–1112.
Taghizadeh-Alisaraei, A., Motevali, A., Ghobadian, B. (2019). Ethanol production from date wastes: Adapted technologies, challenges, and global potential. Renew. Energy 143, 1094–1110.
Valadares, M.C., Carrucha, S.G., Accorsi, W., Queiroz, M.L.S. (2006). Euphorbia tirucalli L. modulates myelopoiesis and enhances the resistance of tumour-bearing mice. Int. Immunopharmacol. 6, 294–299.
Varma, A.K., Mondal, P. (2018). Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J. Therm. Anal. Calorim. 131, 2057–2072.
Varma, A.K., Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 95, 704–717.
Vieira, F.R., Luna, C.M.R., Arce, G.L.A.F., Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy 132, 105412.
Wang, T., Meng, D., Zhu, J., Chen, X. (2020). Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel 264, 116909.
Winsley, P. (2007). Biochar and bioenergy production for climate change mitigation. New Zeal. Sci. Rev. 64, 5–10.
Xu, P., Sun, C.X., Ye, X.Z., Xiao, W.D., Zhang, Q., Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100.
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.
Zhan, S., Chenguang, W., Kang, B., Xinghua, Z., Chiling, Y., Renjie, D., Longlong, M., Changle, P. (2017). Py-GC/MS study of lignin pyrolysis and effect of catalysts on product distribution. Int. J. Agric. Biol. Eng. 10, 214–225.
Zhang, W.K., Xu, J.K., Zhang, X.Q., Yao, X.S., Ye, W.C. (2008). Chemical constituents with antibacterial activity from Euphorbia sororia. Nat. Prod. Res. 22, 353–359.
Zoia, L., Salanti, A., Tolppa, E.-L., Ballabio, D., Orlandi, M. (2017). Valorization of side-streams from a SSF biorefinery plant: Wheat straw lignin purification study. BioResources 12, 1680–1696.