ارزیابی شاخص های انرژی در تولید گشنیز، کلزا و گندم در شهرستان نهاوند با تکنیک های هوش محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

چکیده
مدیریت بهینه انرژی در سیستم ­های کشاورزی و انتشار گازهای گلخانه ­ای ناشی از فعالیت­های کشاورزی، مبحثی است که به یکی از موضوعات موردتوجه محققان در سراسر جهان تبدل شده است. این پژوهش با استفاده از روش میدانی اقدام به­ جمع‌آوری و ثبت اطلاعات به‌صورت مصاحبه و پرسشنامه کرده است. بهینه ­سازی مصرف انرژی و مدل­ سازی انرژی مصرفی برای تولید این محصولات با استفاده از شبکه ­های عصبی مصنوعی و تحلیل پوششی داده ­ها انجام گرفت. به‌منظور انجام تحلیل­ها از نرم ­افزارهای DEA-SOLVER و EMS13 استفاده گردید و مزارع ازنظر میزان انرژی مصرفی و عملکرد تولیدشان مورد ارزیابی قرار گرفتند. نتایج نشان داد که متوسط انرژی برای هر هکتار محصول کلزا، گندم و گشنیز به ­ترتیب حدود 984375، 1338762 و 2/62671 مگا ژول بر هکتار است. در محصولات کلزا و گندم به ­ترتیب با 66/­57­% و 92/72­% به کودهای شیمیایی به‌ویژه کود ازته تعلق داشت و در محصول گشنیز نهاده سموم شیمیایی به­ میزان 01/68 درصد بالاترین سهم در انرژی ورودی را داشت. شاخص نسبت انرژی برای محصولات به­ ترتیب 0/60، 0/91 و 0/50 به­ دست آمد. درنتیجه سهم انرژی ­های غیرمستقیم به­ دلیل مصرف کودهای شیمیایی و سموم شیمیایی در تمامی محصولات بالابود. مقدار کارایی فنی، کارایی فنی خالص و کارایی مقیاس در مزارع کلزا به­ ترتیب 0/89، 94 و 0/96 برآورد شد. پس از کود شیمیایی، انرژی ذخیره‌شده توسط نهاده ­های سوخت با 98/15 درصد، سموم شیمیایی با 02/4 درصد و بذر با 02/2 درصد دررتبه ­های دوم تا سوم جهت بهینه ­سازی انرژی ورودی بودند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Energy Indicators in the Production of Coriander, Rapeseed and Wheat in Nahavand City with Computational Intelligence Techniques

نویسندگان [English]

  • Reza Kiyani
  • Hosein Haji Agha Alizadeh
  • Behnam Sepehr
Department of Biosystems Mechanical Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran
چکیده [English]

Abstract
Optimal energy management in agricultural systems and the emission of greenhouse gases from agricultural activities is one of the topics of interest for researchers around the world. This research has used the field method to collect and record data in the form of interviews and questionnaires. Optimization of energy consumption and modeling of energy consumption for the production of these products were performed using artificial neural networks and data envelopment analysis. DEA-SOLVER and EMS13 software were used for analysis and farms were evaluated in terms of energy consumption and production performance. The results showed that the average energy per hectare of rapeseed, wheat and coriander is about 984375, 1338762 and 626771 MJ per hectare, respectively. In rapeseed and wheat crops, respectively 57.66% and 72.92% of energy input, belonged to chemical fertilizers, especially nitrogen fertilizer, and in coriander, chemical toxins input had the highest share in energy input with 68.01%. Energy ratio index for products was 0.60, 0.91 and 0.50, respectively. As a result, the share of indirect energy was high in all products due to the use of chemical fertilizers and chemical toxins. The amount of technical efficiency, net technical efficiency and scale efficiency in rapeseed fields were estimated to be 0.89, 94 and 0.96, respectively. After chemical fertilizer, energy stored by fuel inputs with 15.98%, chemical toxins with 4.02% and seeds with 2.02% of total stored energy, after chemical fertilizer in the second to third ranks for they had the optimization of input energy.
 

کلیدواژه‌ها [English]

  • Keywords: Artificial Network
  • Coriander
  • Data Envelopment Analysis
  • Rapeseed
  • Wheat
Alam, M.S., Alam, M.R., and Islam, K.K.) 2005(. Energy flow in agriculture. Bangladesh American journal of environmental science, 1(3): 213-220.
Almasi, M., Kiyani, S.H., and Loyemi, N.) 2008(. Fundamentals of Agricultural Mechanization. Jangal Publication. Fourth edition. 293 pages.
Camargo, G.G., Ryan, M.R., and Richard, T.L.             ) 2013(. Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. BioScience 63: 263-273.
Dalgaard, T., Halberg, N., and Porter, J.R.) 2001(. A model foe fossil energy use in Danish agriculture used to compare organic and conventional farming. J. agri. Eco. Environ. 87:51-65
Fathi, R., Amjadpour, F., Kuchakzadeh, A., and Azizpanah, A.) 2019(. Model and efficiency of energy consumption of dryland wheat production using data envelopment analysis approach, a case study of Chardavol city, Ilam province. Iranian Journal of Dryland Agriculture. 7 (1): 33-46.
Ghobadi, M.I., and Fattahi, S.) 2016(. Investigation of the effect of moisture density and stress on growth characteristics, yield and oil content of coriander (Corian drum Sativum L.). Iranian Journal of Medicinal and Aromatic Plants. 32 (5): 924-935.
Hamzehpour, G., Repentance, A., and Sheikhzadeh, P.) 2017(. Study of correlation and regression analysis between quantitative and qualitative traits in different cultivars of rapeseed (Brassica napus L.) in different planting arrangements. Journal of Plant Echo Physiology. 9 (31): 158-179.
Hatirli, S.A., Ozkan, B., and Fert, C.) 2006(. Energy inputs and crop yield relationship in greenhouse tomato production. Renew energy 31: 427-38.
Hoshyar, A.) 2009(. Comparison of energy consumption in wheat and rapeseed production in two regions of Fars province. Master Thesis of Shahid Chamran University.
Kitani, O., Jungbluth, T., Peart, R.M., and Ramdani, A.) 1999(. CIGR handbook of agricultural engineering Energy and biomass engineering (V. 5). ASAE.
Kizilaslan, H.) 2009(. Input-output energy analysis of cheey production in Tokat province of turkey. J. applied energy. 86: 1354-1358.
MirHaider, H.) 1993(. Plant Education, Islamic Culture Publishing House. Tehran: first edition.
Mobtaker, H.G., Keyhani, A., Mohammadi, A., Rafiee, S., and Akram, A.) 2010(. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment 137: 367-372.
Mousavi-Avval, S. H., Rafiee, S., Jafari, A., and Mohammadi, A.) 2011(. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production 19: 1464-1470.
Nabavi-Pelesaraei, A., Abdi, R., and Rafiee, S.             (2014(. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences.
Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., and Chervet, A.) 2013(. Life cycle assessment of swiss farming systemII. Extensive and intensive production. J. Agri. Sys. 104:233-245.
Ozkan, B., Akcaoz, H., and Karadeniz, F.) 2004(. Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management 45: 1821-1830.
Rahmatian, M., Yeganeh, R., and Nematullahi, M. A.) 2019(. Modeling and forecasting forces on reversible plow using two methods of response surface and artificial neural network. Agricultural Machinery, 10 (2), 169-185.
 Rahman, M.M., and Bala, B.K.) 2010(. Modeling of jute production using artificial neural networks. Biosyst. Eng. 105:350-356.
Rajabi-Hamedani, S.R., Shabani, Z., and Rafiee, S. (2011(. Energy inputs and crop yield relationship in potato production in Hamadan province of Iran. Energy. 36:2367–2371.
SaberFar, F., and Zamanian, A.) 2012(. Agriculture, the economic basis of Nahavand city development. Farhangan (41). 142-132.
Singh, G.) 2006(. Estimation of a Mechanization Index and Its Impact on Production and Economic Factors. A Case Study in India. Biosystems Engineering, 93(1): 99-106.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E., Haberl, H., Harper, R., House, J., and Jafari, M.) 2014(. Agriculture, Forestry and Other Land Use (AFOLU). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Taki, M., Abdi, R., Akbarpour, M., and Mobtaker, H. G.) 2013(. Energy inputs–yield relationship and sensitivity analysis for tomato greenhouse production in Iran. Agricultural Engineering International: CIGR Journal, 15(1), pp.59-67.