تغییر جرم حجمی و ضریب انتشار رطوبت میگو متاثر از چروکیدگی هنگام خشک‌شدن

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش مهندسی بیوسیستم - دانشکده کشاورزی - دانشگاه شیراز - شیراز – ایران

چکیده

خشک ­کردن بخشی از راهبرد مهندسی صنایع غذایی برای پاسخ سریع به نیازهای بازار مصرف، کاهش هزینه تولید، افزایش ماندگاری، بازده و کیفیت محصول است. میگو یک محصول دریایی فصلی پر رونق در جنوب کشور برای مصارف خارج فصل یا صادرات، خشک­ می­شود. برای خشک‌کردن صنعتی میگو، دانستن خصوصیات فیزیکی از اهمیت ویژه­ای برخوردار است. در این پژوهش اثر چروکیدگی میگو هنگام خشک­شدن در یک خشک­کن هوای داغ همرفتی بر تغییرات جرم‌حجمی و ضریب انتشار رطوبت مورد بررسی قرار گرفت. میگوی وانامی (سفید آمریکایی) پرورشی با هوای داغ در دو سطح سرعت یک و دو متر بر ثانیه و سه سطح دمای 40، 50 و60 درجه سلسیوس خشک شد. از 212 عدد میگو، 106 عدد میگو به صورت مکعب مستطیل و 106 عدد میگو به صورت کامل مورد آزمایش قرار گرفت. در هر آزمایش دما و رطوبت هوای ورودی و خروجی خشک­کن، و جرم، حجم، ضخامت و رطوبت نمونه‌ها اندازه­گیری شد. با استفاده از پردازش تصویر عکس­های تهیه شده در زمان آزمایش، مساحت نمونه­ها در فواصل زمانی مشخص محاسبه شد و بر مبنای این داده­ها، چروکیدگی (بر مبنای مساحت) تعیین شد. همچنین، چروکیدگی واقعی با استفاده از تغییرات حجم نمونه­ها محاسبه گردید. بر داده­های نسبت رطوبت (مبنای خشک) و چروکیدگی مدل­های خطی و غیرخطی نمایی و چند جمله‌ای درجه دو و سه در نرم­افزار MATLAB 2020 برازش داده شد و برای هر مدل شاخص­های SSE, RMSE, R2 محاسبه شد. مطابق این شاخص­ها، مدل­های چند جمله ­ای درجه دو و سه، بیشترین دقت برای تخمین چروکیدگی را داشتند. از این مدل­ها در حل معادله فیک استفاده شد و ضرایب انتشار رطوبت برای هر آزمایش به ازای هر مقدار چروکیدگی و نسبت رطوبت تعیین گردید. نتایج نشان داد که شکل نمونه و نوع مدل استفاده شده برای مقادیر چروکیدگی و محتوای رطوبت، بر مقدار ضرایب انتشار رطوبت محاسبه شده موثر بوده ­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Variation in Density and Moisture Diffusion Coefficient of Shrimp Affected by Shrinkage During Drying

نویسندگان [English]

  • Mohammad Amin Zandpour
  • Seyed Mehdi Nassiri
  • Mehdi Moradi Hasanabad
  • Mohammad Amin Nematollahi
Department of Biosystems Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Introduction
Drying agricultural and aquatic products is a widespread practice globally, aimed at increasing shelf life and preventing microbial growth. During the drying process, heat and mass transfer are dominant phenomena, which are closely linked to the moisture diffusion coefficient. Drying is a thermal process where heat and moisture transfer occur simultaneously, with moisture being reduced as the sample heats up. This process concludes when significant temperature changes, and moisture transfer stops once the moisture content reaches a stable point. The drying process can lead to product shrinkage and pore formation, which can affect the quality and efficiency of drying. Shrinkage occurring alongside moisture release, can impact moisture transfer during drying. In meat processing, muscle shrinkage influences the energy consumption and tenderness of meat products, a key quality trait. Shrinkage and structural changes also contribute to a reduction in food volume during drying. Without considering shrinkage in drying models, results may lack accuracy. Mathematical modeling is a powerful tool for studying moisture transfer phenomena and understanding drying processes. This study examines the effect of shrimp shrinkage on the moisture diffusion coefficient during hot air convection drying. The aim is to assess the impact of shrinkage on moisture diffusion in both linear and nonlinear models and select the most accurate relationship for practical applications.
Materials and Methods
In this study, 212 Vannamei shrimp (Litopenaeus vannamei) which were packed in a standard packaging size for export, with an average weight of approximately 3 kg per box, were purchased from Marjan-e-Bushehr Company. The frozen shrimp boxes were transferred to a laboratory and stored in freezer for experiments. Required samples from batch were randomly chosen and kept for 12 hours at laboratory temperature before testing and skinned. The moisture content of the shrimp was determined by drying 20 shrimp at 105°C for 24 hours. The shrimp were dried in a convective hot air dryer at temperatures of 40, 50, and 60 °C with air velocity of 1 and 2 m/s. Samples were prepared in two forms: intact shrimp and cuboid shape samples (15×17×30 mm). During the drying process, parameters such as mass, volume, thickness, and image data were collected at intervals. The drying continued until the moisture content of the shrimp reached 17 % (d.b.). The shrinkage of dried samples based on volume and surface area were calculated, and mathematical models were developed to describe the relationship between moisture content and shrinkage. These models, evaluated using MATLAB 2020, were used to calculate the moisture diffusion coefficient (De) for both intact and cuboid shrimp at different drying duration times. The results were analyzed using various error indices to validate the models' accuracy.
Results and Discussion
The results present the average bulk density values, ranging from 704 to 3374 kg/m³, indicating a significant effect of drying treatments on shrimp volume changes. Previous studies report a bulk density range of 1042 to 1093 kg/m³ for shrimp at 20°C. Drying weakens molecular bonds in shrimp’s protein structures, leading to shrinkage, which ultimately changes its volume and density. Factors like sample geometry, drying method, temperature, and air velocity also influence bulk density. During drying, a consistent trend was observed across all treatments, bulk density increased towards the end as volume reduction slowed. This is due to the decreased moisture content, while shrinkage continues to increase. Analysis showed that polynomial models fit the bulk density data better than linear or exponential ones. Additionally, drying time was strongly affected by temperature, with each degree increase reducing drying time by approximately 45 minutes. The study also explored the use of image processing for assessing shrinkage, which provided more accurate volume measurements compared to surface area-based methods. Moreover, the study suggests that for accurate models of moisture-shrinkage relations, intact samples and volume-based shrinkage measurements using toluene are preferable. However, image processing, being non-destructive, could serve as a suitable alternative. Lastly, moisture diffusion coefficients were affected by the drying conditions, with higher temperatures and air speeds leading to faster drying, as confirmed by other studies. The study also concluded that sample size impacts drying rates, with smaller samples drying faster.
Conclusion
It was found that the true density of shrimp increased due to greater volume reduction than mass change at the end of the drying process. Drying time was influenced by air temperature, velocity, and sample size (shape). The best models subjected to moisture-shrinkage data were Polynomial D2 and D3. Moisture diffusion coefficient was then calculated based on D3 shrinkage model, and it was found that this coefficient is inversely affected by the shrimp shrinkage.

کلیدواژه‌ها [English]

  • Drying
  • Moisture diffusion coefficient
  • Moisture ratio
  • Real-time soil surface
  • Shrimp
  • Shrinkage
Almaei, M., Nassiri, S. M., Nematollahi, M. A., Zare, D., & Khorram, M. (2023). Studying the drying process of farmed shrimp meat in a hot convective air dryer and the changes of some parameters related to it. Agricultural Machines Journal, 15(1). (In Persian) https://doi.org/10.22067/jam.2023.80905.1145
Amankwah, E., Dzisi, K., Straten, G., & Boxtel, A. (2018). Moisture Dependent Diffusion and Shrinkage in Yam during Drying. International Journal of Food Engineering. https://doi.org/10.1515/ijfe-2017-0394
Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D., & Matteo, M. (2013). Mathematical modeling of eggplant: shrinkage effect. Journal of Food Engineering, 114, 99-105. http://dx.doi.org.10.1016.j.jfoodeng.2012.07.031
Chen, P., Qiu, Y., Chen, S., Zhao, Y., Wu, Y., & Wang, Y. (2022). Insights into the effects of different drying methods on protein oxidation and degradation characteristics of golden pompano (Trachinotus ovatus). Frontiers in Nutrition, 9, 1063836. http://dx.doi.org.10.3389/fnut.2022.1063836
Corrales, L., Prieto, J., Villasenor, J., & Hernandez, E. (2010). Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. Journal of Food Engineering, 98, 198-206. http://dx.doi.org.10.1016.j.jfoodeng.2009.12.026
Costa, M. V., Silva, A. K. N., Rodrigues, P. R., Silva, L.  H.  M. & Cruz Rodrigues, A.  M. (2018). Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments. Food Science and Technology. 38(4). 612-618. https://dx.doi.org/10.1590/fst.31517
Datta AK (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. Journal of Food Engineering, 80(1). 80–95. https://doi.org/10.1016/j.jfoodeng.2006.05.013
Dhalsamant K, Tripathy PP, Shrivastava SL (2018). Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: numerical simulation and experimental validation. Food and Bioproducts Processing, 109. 107–121. https://doi.org/10.1016/j.fbp.2018.03.005
Erşan, A. C. & Tugrul, N. (2020). The drying kinetics and characteristics of Shrimp dried by conventional methods. Chemical Industry and Chemical Engineering Quarterly, 27(4). 319- 328. https://dx.doi.org/10.2298/CICEQ201114050E
Faal S, Tavakoli T, Ghobadian B (2015). Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer. Journal of Food Science and Technology. 2950–2957. https://doi.org/ 10.1007/s13197-014-1331-9
Golestani R, Raisi A, Aroujalian A (2013). Mathematical modeling on air drying of apples considering shrinkage and variable diffusion coefficient. Drying Technology, 31(1). 40–51. http://dx.doi.org.10.1080.07373937.2012.714826
Hosseinpour, S., Rafiee, S., & Mohtasebi, S. (2011). Application of Image Processing to Analyze Shrinkageand Shape Changes of Shrimp Batch during Drying. Drying Technology, 29, 1416-1438. http://dx.doi.org.10.1080.07373937.2011.587620
Junqueira, JRJ., Correˆa, JLG., de Oliveira, HM., Ivo Soares Avelar, R., Salles Pio, LA., (2017). Convective drying of cape gooseberry fruits: effect of pretreatments on kinetics and quality parameters. LWT Food Science and Technology, 82. 404–410. https://doi.org/10.1016/j.lwt.2017.04.072
Kassama, L. S. & Ngadi, M. O. (2004). Pore development in chicken meat during deep-fat frying. LWT Food Science and Technology. 37. 841-847. http://dx.doi.org/10.1081/DRT-200054239
Khan M. I. H., Kumar C, Joardder M. U. H. & Karim M. A. (2017) Determination of appropriate effective diffusivity for different food materials. Drying Technology, 35(3). 335–346. http://dx.doi.org/10.1080/07373937.2016.1170700
Koch, B., Eren, I., & Ertekin, F. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. Journal of Food Engineering, 85, 340-349. http://dx.doi.org.10.1016.j.jfoodeng.2007.07.030
Mahapatra, A. & Tripathy, P. P. (2018). Modeling and simulation of moisture transfer during solar drying of carrot slices. Journal of Food Process Engineering, 41(8). 1–15. https://doi.org/10.1111/jfpe.12909
Mayor, L. & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. 61(3). 373-386. https://dx.doi:10.1016/S0260-8774(03)00144-4
Niamnuy, C., Devahastin, S., Soponronnarit, S., & Raghavan, G. (2008). Modeling coupled transport phenomena and mechanical deformation of shrimp during drying a jet spouted bed dryer. Chemical Engineering Science, 63, 5503-5512. http://dx.doi.org.10.1016.j.ces.2008.07.031
Olanipekun BF, Tunde-Akintunde TY, Oyelade OJ, Adebisi MG, Adenaya TA (2015) Mathematical modeling of thin-layer pineapple drying. Journal of Food Processing and Preservation, 39(6). 1431–1441. https://doi:10.1111/jfpp.12362
Perussello, C., Kumar, C., Castilhos, F., & Karim, M. (2014). Heat and mass transfer modeling of the osmo-convective drying of yacon roots (Smallanthus sonchifolius). Applied Thermal Engineering, 63, 23-32. http://dx.doi.org.10.1016.j.applthermaleng.2013.10.020
Rani, P., Tripathy, P. (2020). Modelling of moisture migration during convective drying of pineapple slice considering non-isotropic shrinkage and variable transport properties. Food Scientists & Technologists, 57, 3748–3761. https://doi.org.10.1007.s13197-020-04407-4
Rao, W., Shi, Z., Liu, S., Shu, Y., Chai, X., & Zhang, Z. (2022). Shrinkage Properties and Their Relationship with Degradation of Proteins Linking the Endomysium and Myofibril in Lamb Meat Submitted to Heating or Air Drying. Foods,11, 2242. https://doi.org.10.3390.foods11152242
Reddy RS, Ravula PR, Arepally D (2017). Drying kinetics and modelling of mass transfer in thin layer convective drying of pineapple. Chemical Science International Journal, 19(3). 1–12. https://doi.org/10.9734/CSJI/2017/32746
Tagne, M., Remond, R., Rogaume, Y., Zoulalian, A., & Bonoma, B. (2016). Modeling of coupled heat and mass transfer during drying of tropical woods. International Journal of Thermal Sciences, 109, 299-308. https://doi.org/10.1016/j.ijthermalsci.2016.06.012
Tsuruta, T., Tanigawa, H., & Sashi, H. (2015). Study on shrinkage deformation of food in microwave–vacuum drying. Drying Technology, 33, 1830–1836. https://doi.org.10.1080.07373937.2015.1036286
Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Siences, 136, 539-548. https://doi.org.10.1016.j.ijthermalsci.2018.10.042
Vallespir, F., Crescenzo, L., Rodrı´guez, O., Marra, F. & Simal, S. (2019). Intensification of low-temperature drying of mushroom by means of power ultrasound: effect on drying kinetics and quality parameters. Food and Bioprocess Technology. 12(5). 839–851. https://doi.org/10.1007/s11947-019-02263-5