مدل‌سازی و بهینه‌سازی سامانه تجدیدپذیر ترکیبی خورشیدی - بادی برای تولید الکتریسیته مزارع فریدون شهر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

بخش کشاورزی به‌عنوان یکی از پرمصرف‌ترین بخش‌ها از نظر انرژی، نقشی حیاتی در تأمین امنیت غذایی دارد. با افزایش تقاضای جهانی برای انرژی و تشدید نگرانی‌های محیط‎زیستی، ضرورت استفاده از منابع تجدیدپذیر در این حوزه بیش‌ازپیش احساس می‌شود. با این‌حال، هزینه‌های اولیه بالا و ناپایداری تولید، موانعی جدی برای توسعه این فناوری‌ها ایجاد کرده است. این پژوهش با هدف شناسایی راهکارهای فنی و اقتصادی برای تأمین انرژی پایدار در کشاورزی، به بررسی سناریوهای مختلف تولید انرژی تجدیدپذیر در یک مزرعه ۵۰ هکتاری واقع در شهرستان فریدون­شهر، استان اصفهان پرداخته است. برای این منظور، شش سناریوی مبتنی بر ترکیب انرژی‌های خورشیدی و بادی طراحی و با استفاده از نرم‌افزار هومر شبیه‌سازی و بهینه‌سازی شدند. نتایج نشان داد که سناریو 5 که شامل ترکیب انرژی‌های تجدیدپذیر خورشیدی و بادی، متصل به شبکه سراسری، با امکان فروش انرژی مازاد به شبکه و بدون استفاده از ژنراتورهای سوخت فسیلی است، با تولید 99/462 مگاوات‌ساعت انرژی و مشارکت 58 درصدی منابع تجدیدپذیر، بهترین گزینه می‌باشد. این سناریو با هزینه انرژی 022/0 دلار به ازای هر کیلووات‌ساعت، از نظر اقتصادی به‌صرفه‌ترین گزینه محسوب می‌شود. این پژوهش با تأکید بر ضرورت توسعه زیرساخت‌های ذخیره‌سازی و ارتقای فناوری‌های تولید انرژی، نشان می‌دهد که استفاده از سامانه‌های ترکیبی تجدیدپذیر می‌تواند گامی اساسی در کاهش وابستگی به سوخت‌های فسیلی و تحقق کشاورزی پایدار باشد.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Optimization of a Hybrid Solar-Wind Renewable System for Electricity Generation in Fereydunshahr Farms

نویسندگان [English]

  • Mehran Movahedi
  • Asadolah Akram
  • Majid Khanali
Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The agricultural sector, as one of the most energy-intensive sectors, plays a vital role in ensuring food security. With the increasing global demand for energy and intensifying environmental concerns, the need to use renewable resources in this area is felt more than ever. However, high initial costs and production instability have created serious obstacles to the development of these technologies. This study, with the aim of identifying technical and economic solutions for providing sustainable energy in agriculture, examined different scenarios for renewable energy production on a 50-hectare farm located in Fereydunshahr County, Isfahan Province. For this purpose, six scenarios based on the combination of solar and wind energy were designed and simulated and optimized using Homer software. The results showed that Scenario 5, which includes a combination of solar and wind renewable energies, connected to the national grid, with the possibility of selling excess energy to the grid and without the use of fossil fuel generators, is the best option, producing 462.99 MWh of energy and a 58% contribution from renewable sources. This scenario is considered the most economically viable option with an energy cost of $0.022 per kWh. This study, emphasizing the need to develop storage infrastructure and improve energy production technologies, shows that the use of renewable hybrid systems can be a fundamental step in reducing dependence on fossil fuels and realizing sustainable agriculture.
Introduction
Energy, a critical pillar of development, plays a key role in the global economy by driving industrial, agricultural, transportation, and other economic sectors. The significant increase in population and economic growth, particularly in developing countries, has resulted in a considerable rise in global energy demand in recent decades. In the agricultural sector, energy consumption has been increasing due to its usage in irrigation and agricultural equipment. This growth in demand coupled with economic development necessitates a close examination of consumption patterns and the formulation of appropriate policies to manage consumption and foster sustainable development in the energy sector. Given the growing significance of utilizing renewable energy in the agricultural sector, the present study investigates the potential of harnessing alternative energy sources on agricultural farms in the Fereydunshahr region of Isfahan province. Currently, energy in agricultural farms in this region is primarily supplied through fossil resources and traditional methods or through the national electricity grid, which leads to dependency on non-renewable energy sources and increased costs. The primary objective of this study is to model and evaluate the technical and economic feasibility of using renewable energy systems in agricultural farms within the Fereydunshahr region.
Materials and Methods
The present study aimed to investigate and analyze the electricity supply to a 50-hectare farm located in Fereydunshahr County, Isfahan Province, in a cold and mountainous area at an altitude of 2510 meters above sea level. To achieve this, six scenarios were designed and evaluated, taking into account sustainable agricultural production. Scenario 1: Combination of solar and wind renewable energies, connected to the national grid, without the possibility of selling excess energy to the grid and using fossil fuel generators. Scenario 2: Combination of solar and wind renewable energies, connected to the national grid, with the possibility of selling excess energy to the grid and using fossil fuel generators. Scenario 3: Combination of solar and wind renewable energies, independent of the national grid, designed for operation in areas without access to the electricity grid and using fossil fuel generators. Scenario 4: Combination of solar and wind renewable energies, connected to the national grid, without the possibility of selling to the grid and without the use of fossil fuel generators. Scenario 5: Combination of solar and wind renewable energies, connected to the national grid, with the possibility of selling excess energy to the grid and without the use of fossil fuel generators. Scenario 6: Using the national grid and fossil fuel generators (diesel fuel) to provide electricity, without the use of renewable energy sources. The technical and economic aspects of these scenarios were assessed using simulation, optimization, and sensitivity analysis in the Homer software. Data related to equipment, initial and operating costs, load patterns, and regional climatic conditions were analyzed to develop a comprehensive assessment of each scenario.
Results and Discussion
Based on the available results, Scenario 1 combines solar, wind, and generator renewables connected to the national grid without the ability to sell excess energy back to the grid. It generates a total of 406,269 kWh of energy, with 31.8% derived from renewables. Scenario 4 is similar to Scenario 1, but it omits the use of fossil fuel generators and the ability to sell excess energy. It produces 462,435 kWh of energy, with a renewable share of 41.8%. The unused energy in this scenario is 134,533 kWh, and the initial cost and energy cost are $263,920 and $0.0502 per kWh, respectively. Scenario 5 represents an ideal balance by combining solar and wind resources connected to the national grid with the ability to sell excess energy to the grid. It generates 462,998 kWh of energy, with a renewable energy share of 58%, resulting in only 5,806 kWh of unused energy. The initial cost is $265,825, and the energy cost is $0.0226 per kWh, making it a cost-efficient and sustainable option when considering the balance between renewable energy generation, cost reduction, and waste reduction. Scenario 6 solely relies on non-renewable sources, including the national grid and fossil fuel generators, which generates 320,606 kWh of energy but contributes no renewable energy. The initial cost is $60,000, and the energy cost is $0.0199 per kWh, the lowest among the scenarios. However, relying entirely on non-renewable resources has significant negative environmental impacts, making this scenario unsustainable from a sustainability perspective. This comparison underscores the benefits of Scenario 5 in terms of sustainable energy supply and cost efficiency. The analysis also underscores the importance of complementary policies, technological efficiency, and environmental factors for the widespread adoption and sustainability of renewable energy systems.
Conclusion
To address the need for sustainable energy sources in farms aimed at increasing food security, this study modeled and optimized various scenarios. Through this process, Scenario 5 was identified as the most optimal option. It is a combination of solar and wind renewable energies, connected to the national grid, and possesses the capability to sell excess energy to the grid while eliminating the use of fossil fuel generators.

کلیدواژه‌ها [English]

  • Hybrid Systems
  • Renewable Energy
  • Sustainable Agriculture
  • Technical and Economic Analysis
Adefarati, T., & Bansal, R. C. (2019). Application of renewable energy resources in a microgrid power system. The Journal of Engineering, 2019(18), 5308-5313.‏
Amutha, W. M., & Rajini, V. (2015). Techno-economic evaluation of various hybrid power systems for rural telecom. Renewable and Sustainable Energy Reviews, 43, 553-561.‏
Colmenar-Santos, A., Palomo-Torrejón, E., Mur-Pérez, F., & Rosales-Asensio, E. (2020). Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast. Applied Energy, 262, 114433.‏ https://doi.org/10.1016/j.apenergy.2019.114433.
Das, B. K., Alotaibi, M. A., Das, P., Islam, M. S., Das, S. K., & Hossain, M. A. (2021). Feasibility and techno-economic analysis of stand-alone and grid-connected PV/Wind/Diesel/Batt hybrid energy system: A case study. Energy Strategy Reviews, 37, 100673.‏
Das, M., & Mandal, R. (2022). The effect of photovoltaic energy penetration on a Photovoltaic-Biomass-Lithium-ion off-grid system and system optimization for the agro-climatic zones of West Bengal. Sustainable Energy Technologies and Assessments, 53, 102593.
Deshmukh, M. K., & Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renewable and sustainable energy reviews, 12(1), 235-249.‏ https://doi.org/10.1016/j.rser.2006.07.011.
Ding, Z., Hou, H., Yu, G., Hu, E., Duan, L., & Zhao, J. (2019). Performance analysis of a wind-solar hybrid power generation system. Energy Conversion and Management, 181, 223-234.‏
Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196, 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085.
Elmahallawy, M., Elfouly, T., Alouani, A., & Massoud, A. M. (2022). A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction. Ieee Access, 10, 119040-119070.‏
Emrani, A., & Berrada, A. (2024). Modeling and optimal capacity configuration of dry gravity energy storage integrated in off-grid hybrid PV/wind/biogas plant incorporating renewable power generation forecast. Journal of Energy Storage, 97, 112698.‏
Fayazi, S., Zareei, S., Samimi-Akhijahani, H. and Maleki, M. R. (2024). Improving biogas production from fruit waste: using chemical, mechanical and thermal pretreatments and co-digestion with cow manure. Agricultural Mechanization, 9(1), 13-23. (In Persian).
Garcia, A. V. M., Sánchez-Romero, F. J., López-Jiménez, P. A., & Pérez-Sánchez, M. (2022). A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems. Renewable Energy, 195, 853-871.‏ https://doi.org/10.1016/j.renene.2022.06.060.
Gandiglio, M., Marocco, P., Bianco, I., Lovera, D., Blengini, G. A., & Santarelli, M. (2022). Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community. International Journal of Hydrogen Energy, 47(77), 32822-32834.‏ https://doi.org/10.1016/j.ijhydene.2022.07.199.
Giraud, F., & Salameh, Z. M. (2001). Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage. IEEE transactions on energy conversion, 16(1), 1-7.‏ https://doi.org/10.1109/60.911395.
Goel, S., & Sharma, R. (2017). Performance evaluation of stand-alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews, 78, 1378-1389.‏
Hassan, Q., Algburi, S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results in Engineering, 101621.‏ https://doi.org/10.1016/j.rineng.2023.101621.
Jalalvand, M., Akram, A. and Khanali, M. (2024). Agricultural Mechanization Assessment in Boroujerd County by Mechanization Evaluation Indices. Agricultural Mechanization, 9(4), 71-88. (in Persian). https://doi.org/10.22034/jam.2024.62765.1285.
Kapen, P. T., Nouadje, B. A. M., Chegnimonhan, V., Tchuen, G., & Tchinda, R. (2022). Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro. Energy Strategy Reviews, 44, 100988.‏
Khattak, S., Yousif, M., Hassan, S. U., Hassan, M., & Alghamdi, T. A. (2024). Techno-economic and environmental analysis of renewable energy integration in irrigation systems: A comparative study of standalone and grid-connected PV/diesel generator systems in Khyber Pakhtunkhwa. Heliyon, 10(10).‏ https://doi.org/10.1016/j.heliyon.2024.e31025.
Kebede, A. A., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., Van Mierlo, J., & Berecibar, M. (2021). Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. Journal of Energy Storage, 40, 102748.‏ https://doi.org/10.1016/j.est.2021.102748.
Kiehbadroudinezhad, M., Merabet, A., Rajabipour, A., Cada, M., Kiehbadroudinezhad, S., Khanali, M., & Hosseinzadeh-Bandbafha, H. (2022). Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration. Energy Conversion and Management, 252, 115064.‏ 
Lukatskaya, M. R., Dunn, B., & Gogotsi, Y. (2016). Multidimensional materials and device architectures for future hybrid energy storage. Nature communications, 7(1), 12647.‏ https://doi.org/10.1038/ncomms12647.
Manasseh, C. O., Logan, C. S., Okanya, O. C., Igwemeka, E., Odidi, O., Onoh, C. F., & Ejim, E. P. (2025). The Nexus between Electricity Generation and Agricultural Development in Africa. International Journal of Energy Economics and Policy, 15(1), 317-329.‏ https://doi.org/10.32479/ijeep.14651.
Manjula, A., Niraimathi, R., Rajarajeswari, M., & Devi, S. C. (2025). Grid integration of renewable energy sources: challenges and solutions. In Green Machine Learning and Big Data for Smart Grids. 263-286.
Iran Ministry of Energy. (2023). Electricity consumption report in Iran, 2015-2023. Ministry of Energy of Iran. Retrieved February 17, 2024, from www.meo.gov.ir.
Mottaghi, S., & Khob, A. R. (2023). Economic Comparison Between Solar Power and National Grid to Supply Energy for Drip Irrigation System: The Case Study of Pakdasht County. Water Resources, 16(56), 1-14.‏
Nfaoui, M., & El-Hami, K. (2018). Extracting the maximum energy from solar panels. Energy Reports, 4, 536-545.‏
Padrón, I., Avila, D., Marichal, G. N., & Rodríguez, J. A. (2019). Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renewable and Sustainable Energy Reviews, 101, 221-230.‏
Razmjoo, A., Kaigutha, L. G., Rad, M. V., Marzband, M., Davarpanah, A., & Denai, M. J. R. E. (2021). A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renewable Energy, 164, 46-57.‏
Tahir, K. A., Zamorano, M., & García, J. O. (2023). Scientific mapping of optimisation applied to microgrids integrated with renewable energy systems. International Journal of Electrical Power & Energy Systems, 145, 108698.‏
Tari, M. K., Faraji, A. R., Aslani, A., & Zahedi, R. (2023). Energy simulation and life cycle assessment of a 3D printable building. Cleaner Materials, 7, 100168.‏ https://doi.org/10.1016/j.clema.2023.100168.
Vaziri Rad, M. A., Kasaeian, A., Mahian, O., & Toopshekan, A. (2024). Technical and economic evaluation of excess electricity level management beyond the optimum storage capacity for off-grid renewable systems. Journal of Energy Storage, 87, 111385.‏                                    https://doi.org/10.1016/j.est.2024.111385.
Vaziri Rad, M. A., Kasaeian, A., Niu, X., Zhang, K., & Mahian, O. (2023). Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renewable Energy, 212, 538–560. https://doi.org/10.1016/j.renene.2023.05.073.
Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied energy, 87(2), 380-389.‏ https://doi.org/10.1016/j.apenergy.2009.08.012.