مطالعه‌ اثر دمای هوای داغ و پیش تیمار فراصوت روی کیفیت کشمش در کارخانه های بسته بندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران

چکیده

بر اساس مطالعات میدانی صورت گرفته، یکی از مراحل فرآوری کشمش در کارخانه‌های بسته‌بندی، شست‌وشوی دوباره آن جهت از بین بردن مواد شیمیایی استفاده شده در خشک‌کردن اولیه، گرد و خاک و مواد زاید و هم‌چنین بهبود کیفیت محصول می‌باشد که متعاقب آن، خشک کردن مجدد (ثانویه) کشمش ضروری است. یکی از معضلات کارخانه‌های بسته‌بندی کشمش، غیریکنواختی در رطوبت و کیفیت پس از خشک‌کردن ثانویه کشمش است. امروزه در اکثر کارخانه‌های فراوری از سامانه هوای داغ برای خشک‌کردن ثانویه استفاده می‌شود. باتوجه به معایبی که سامانه مذکور دارد بهینه‌سازی سامانه هوای‌داغ از اهمیت بالایی برخوردار است. از آن‌جایی که استفاده از پیش-تیمارها اثر مثبتی برخواص فیزیکی، شیمیایی و تغذیه‌ای دارد، خشک‌کردن با هوای‌داغ در سه سطح 45، 55 و65 درجه سانتی‌گراد و سرعت جریان هوای ثابت 5/1 متربرثانیه، با و بدون پیش‌تیمار فراصوت روی خواص کیفی کشمش (شاخص رنگ، اسیدیته، جذب مجدد آب، چروکیدگی و شاخص قهوه‌ای شدن) مورد مطالعه قرار گرفت، براساس نتایج به‌دست آمده، اثرات اصلی و متقابل پیش‌تیمار فراصوت و دمای هوای داغ روی شاخص‌‌های اسیدیته، چروکیدگی و قهوه‌ای شدن در سطح احتمال یک درصد و روی شاخص رنگ در سطح احتمال پنج درصد معنی‌دار بود. اثر فاکتورهای مورد مطالعه در شاخص جذب مجدد آب، معنی‌دار نبود (P >0.05). در حالت کلی، با درنظر گرفتن کمترین تغییرات شاخص‌های رنگی، میزان چروکیدگی و قهوه‌ای شدن و لحاظ مقدار قابل قبول اسیدیته، خشک‌کردن با هوای داغ 55 درجه سانتی‌گراد با پیش‌تیمار فراصوت به عناون بهترین حالت پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Effects of Hot Air Drying and Ultrasound Pretreatment on Raisins Quality in the Packaging Plants

نویسندگان [English]

  • Hajar Chalak 1
  • Khosro Mohammadi Ghermezgoli 1
  • Mostafa Khojastehnazhand 2
  • Hossein Ghaffari--Setoubadi 1
1 Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Department of Mechanical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran
چکیده [English]

Introduction
Raisins are high-value-added products derived from grape processing. In 2022, Iran ranked fifth among major raisin-producing countries, with exporting over 63,000 tons. In Iran, raisins are primarily prepared using traditional methods, such as sun drying, shade drying, and lye solution dipping. Typically, these traditional methods (drying in open or sun-exposed areas) result in prolonged processing times, causing the raisins to darken. Sun-dried raisins may undergo additional processes such as re-washing and hot air drying before packaging and storage. Higher drying temperatures in re-washed raisins can lead to non-enzymatic browning. Therefore, it is essential to prevent browning reactions that cause color changes and undesirable flavors in raisins. Commercially, sulfur dioxide gas or sulfite solutions were previously used as pretreatment to prevent non-enzymatic browning during secondary drying. However, due to health concerns, the use of sulfites has been restricted. Consequently, newer methods, including alternative pretreatments and hybrid drying systems, have been proposed to enhance the quality of dried products. To date, the application of ultrasound pretreatment in the secondary drying of re-washed raisins has not been studied. Therefore, this research aims to explore methods for maintaining product quality during the current secondary drying process in the packaging plants by examining the effects of the different hot air temperatures and ultrasound pretreatment.
Materials and Methods
Samples (golden or green raisins) were obtained from a raisin processing plant in Bonab County and transported to the Laboratory of Biophysical and Mechanical Properties of Agricultural Products at the Faculty of Agriculture, University of Tabriz. The samples were stored at room temperature. Upon arrival at the laboratory, the samples were cleaned (removing all wood and waste materials) and then placed in appropriate packaging to prevent spoilage and moisture loss. For each experiment repeat, 120 grams of sample were used. Drying tests were conducted using a convective dryer at three different temperatures (45, 55, and 65 ℃) with a constant airflow rate of 1.5 m/s. The weight of the samples was measured every 10 minutes using a digital scale with an accuracy of ±0.01 grams. Measurements continued until the samples reached a moisture content of 12 to 13 percent. The quality characteristics of raisins (Color difference index, browning index, shrinkage, acidity, and rehydration ratio) were measured during experiments. In this research, experiments were conducted using a factorial design. The obtained data were analyzed with SPSS software, and the means were compared at a 5% significance level using Duncan's test.
Results and Discussion
The results from data analysis indicated that hot air treatment, both with and without ultrasound pretreatment, caused significant changes in the color index of raisins. Hot air at 65 ℃ without pretreatment and at 55 ℃ with ultrasound pretreatment were identified as effective methods for color preservation. The rehydration ratio depended on the duration the raisins were submerged in water. Given the short overall submersion time, the results were not significant. The average acidity levels across all treatments were acceptable. The lowest shrinkage rate was observed at 55 ℃ with ultrasound pretreatment. The best browning index results were obtained first with hot air at 45 ℃ without pretreatment, followed by 55 ℃ with ultrasound pretreatment. Using ultrasound pretreatment has enhanced the drying rate and reduced the drying time of the samples compared to those without pretreatment. Ultrasound waves induce cellular disruption and increase cell permeability, which boosts heat penetration and moisture removal. This process ultimately reduces the drying time of the product
Conclusion
The objective of this study was to propose methods to enhance the quality of raisins during secondary hot air drying, which is the prevalent system used in most packaging and processing facilities. This research examined the effects of hot air temperatures at 40, 50, and 60 ℃, with and without ultrasound pretreatment, on the quality indices of raisins. After considering all evaluated indices, hot air at 55 ℃ with ultrasound pretreatment was identified as the most suitable method. As a result of this study, it can be said that the ultrasound application may be used successfully for secondary drying of re-washed raisins.

کلیدواژه‌ها [English]

  • Acidity
  • Drying
  • Moisture content
  • Pretreatment
  • Raisins
Aghilinategh, N., Rafiee, S., Gholikhani, A., Hosseinpur, S., Omid, M., Mohtasebi, S. S., & Maleki, N. (2015). A comparative study of dried apple using hot air, intermittent and continuous microwave: evaluation of kinetic parameters and physicochemical quality attributes. Food Science & Nutrition, 3(6), 519-526. https://doi.org/https://doi.org/10.1002/fsn3.241
Aguilera, J., Oppermann, K., & Sanchez, F. (1987). Kinetics of browning of sultana grapes. Journal of Food Science, 52(4), 990-993. https://doi.org/https://doi.org/10.1111/j.1365-2621.1987.tb14258.x
Anonymous. (2015). Dry fruits –Determination of the moisture content- test methods. Iranian National Standardization Organization, ISNO 672, 1-8.
Anonymous. (2022). FAO Statistics, https://www.fao.org/faostat/en/#data/TCL.
Ayoubi, A., Sedaghat, N., Kashaninejad, M., & Mahallati, M. N. (2016). Investigation of the effect of drying conditions in cabinet dryer on grape drying intensity and quality characteristics of raisins.
Candemir, A., Çalışkan Koç, G., Dirim, S. N., & Pandiselvam, R. (2023). Effect of ultrasound pretreatment and drying air temperature on the drying characteristics, physicochemical properties, and rehydration capacity of raisins. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04269-8
Carabasa-Giribet, M., & Ibarz-Ribas, A. (2000). Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering, 44(3), 181-189. https://doi.org/https://doi.org/10.1016/S0260-8774(00)00027-3
Chalak, H., Mohammadi-Ghermezgoli, k., Khojastehnazhand, M., & Ghaffari, H. (2024). Effects of infrared radiation intensity and ultrasound pretreatment on the appearance quality of raisins in the secondary drying stage in the packaging plants. Agricultural Mechanization, 8(4), 41-51. https://doi.org/10.22034/jam.2024.59895.1270
Dadali, G., Demirhan, E., & Özbek, B. (2007). Color Change Kinetics of Spinach Undergoing Microwave Drying. Drying Technology, 25(10), 1713-1723. https://doi.org/10.1080/07373930701590988
Dajbych, O., Kabutey, A., Mizera, Č., & Herák, D. (2023). Investigation of the Effects of Infrared and Hot Air Oven Drying Methods on Drying Behaviour and Colour Parameters of Red Delicious Apple Slices. Processes, 11(10), 3027. https://www.mdpi.com/2227-9717/11/10/3027
Demirbüker, D., Simsek, S., & Yemenicioglu, A. (2004). Potential application of hot rehydration alone or in combination with hydrogen peroxide to control pectin methylesterase activity and microbial load in cold‐stored intermediate‐moisture sun‐dried figs. Journal of Food Science, 69(3), FCT170-FCT178.
Dong, Y. H., Zhang, R. Y., Zhang, Z. T., Yang, L. W., Xue, C. H., Wei, J., & Yang, R. Y. (2013). Study on kinetics of color changes in thompson seedless grapes during drying process. Advanced Materials Research, 726, 456-462.
Doymaz, İ., & Pala, M. (2002). The effects of dipping pretreatments on air-drying rates of the seedless grapes. Journal of Food Engineering, 52(4), 413-417. https://doi.org/https://doi.org/10.1016/S0260-8774(01)00133-9
Feng, H., & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. Journal of Food Science, 63(4), 679-683.
Gholami, M. (2007). Estimation of Moisture Desorption Isotherms for Thompson Seedless Raisins and Determining the Best Appropriate Model Journal of food science and technology(Iran), 4(3), 49-58.
Gholami, M., Rashidi, M., Ranjbar, A., & Abbasi, S. (2012). Investigating the effective parameters on quality black currant raisin. Food Science and Technology (Iran), 4(2), 57-68 (In Persian).
Hamedani, Z., Mojarradi, G., Shams, A., & zarrin-Ghalami, S. (2014). Comparative study of traditional and modern methods of  raisins production. The first national snack conference, MAshhad, Iran.
Karathanos, V. T., Karanikolas, T., Kostaropoulos, A. E., & Saravacos, G. D. (1995). Non enzymatic browning in air-drying of washed raisins. In G. Charalambous (Ed.), Developments in Food Science (Vol. 37, pp. 1057-1064). Elsevier. https://doi.org/https://doi.org/10.1016/S0167-4501(06)80218-9
Kaveh, M., Jahanbakhshi, A., Askari Asli-Ardeh, E., & Imanian, K. (2019). Sour lemon drying by hot air drying under ultrasonic pre-treatment. Innovative Food Technologies, 6(2), 233-245. https://doi.org/10.22104/jift.2018.2985.1727
Khiari, R., Zemni, H., & Mihoubi, D. (2019). Raisin processing: physicochemical, nutritional and microbiological quality characteristics as affected by drying process. Food Reviews International, 35(3), 246-298. https://doi.org/10.1080/87559129.2018.1517264
Khodabakhsh, A. (2006). Economics and business management: assessment of the country's raisin exports. Business reviews, 17(20), 85-93. https://www.noormags.ir/view/fa/articlepage/163753
Kutlu, N., Pandiselvam, R., Kamiloglu, A., Saka, I., Sruthi, N. U., Kothakota, A., . . . Maerescu, C. M. (2022). Impact of ultrasonication applications on color profile of foods. Ultrasonics Sonochemistry, 89, 106109. https://doi.org/https://doi.org/10.1016/j.ultsonch.2022.106109
Laborde, M. B., Barreto, G. P., & Pagano, A. M. (2018). Ultrasound-assisted Dehydration Process Applied to Red Globe Grapes for Producing Low Calorie Raisins. American Journal of Food Science and Technology, 6(5), 209-214. http://pubs.sciepub.com/ajfst/6/5/3
Maskooki, A., Mortazavi, A., & Maskooki, A. (2007). Effects of combined caustic soda and ultrasound on reducing the drying time of grapes in raisin production [Research]. Iranian Journal of Nutrition Sciences and Food Technology, 2(1), 1-10. http://nsft.sbmu.ac.ir/article-1-28-fa.html
Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2012.06.013
Patidar, A., Vishwakarma, S., & Meena, D. (2021). Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Frontiers, 2(1), 46-61. https://doi.org/https://doi.org/10.1002/fft2.64
Seremet, L., Botez, E., Nistor, O.-V., Andronoiu, D. G., & Mocanu, G.-D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104-109. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.03.125
Setareh, R., Mohammadi-Ghermezgoli, K., Ghaffari-Setoubadi, H., & Alizadeh-Salteh, S. (2023). The effectiveness of hot-air, infrared and hybrid drying techniques for lemongrass: appearance acceptability, essential oil yield, and volatile compound preservation. Scientific Reports, 13(1), 18820. https://doi.org/10.1038/s41598-023-44934-6
Wang, N., & Brennan, J. G. (1995). Changes in structure, density and porosity of potato during dehydration. Journal of Food Engineering, 24(1), 61-76. https://doi.org/https://doi.org/10.1016/0260-8774(94)P1608-Z