بررسی تأثیر زمان ذخیره‌سازی در شناسایی و تفکیک ترکیب‌های مختلف سوخت‌ بیودیزل با استفاده از بینی الکترونیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

انرژی به‌عنوان یکی از مهم‌ترین و ضروری‌ترین عوامل تولید، دارای تأثیر قابل ‌توجهی در زندگی بشر است. با توجه ‌به اینکه منابع سوخت‌های فسیلی رو به اتمام است، پژوهشگران به دنبال جایگزین ‌کردن سوخت بیودیزل به‌عنوان یک سوخت زیستی قابل تجدید و دارای خواص نزدیک به گازوئیل هستند. هدف از این تحقیق شناسایی و تفکیک ترکیب­های مختلف سوخت بیودیزل و گازوئیل (2، 5، 10 و 20 درصد حجمی) با منشا روغن گیاهی متفاوت (کلزا، آفتاب‌گردان و روغن پسماند) در بازه زمانی متفاوت (پس از تولید، 1 ماه، 2 ماه و 3 ماه ذخیره) است. در این تحقیق ابتدا سوخت بیودیزل از منابع مختلف مانند روغن‌های‌ کلزا و آفتاب‌گردان و پسماند آشپزی با متانول و کاتالیزور  KOH(پتاسیم هیدروکسید) تهیه شد. هر کدام از سوخت‌ها با درصد حجمی 2، 5، 10 و 20 با سوخت دیزل مخلوط شده، با کمک سامانه بینی الکترونیکی مجهز به 10 حسگر در مدت ‌زمان‌های مختلف (هر آزمایش در یک ماه) داده‌برداری و با روش‌های مختلفی همچون تحلیل تفکیک خطی و درجه دوم (LDA و QDA) و تحلیل ماشین بردار پشتیبان (SVM) مورد تجزیه ‌و تحلیل قرار گرفت. نتایج - نشان داد درستی (precision) روشهای طبقهبندی برای تفکیک سوخت‌های خالص از همدیگر در هر چهار زمان ذخیره‌سازی به‌ترتیب برای روش SVM 97، 100، 82 و 82، برای روش QDA به‌ترتیب 100، 100، 100 و 98 و برای LDA به‌ترتیب 100، 96، 100 و 100 درصد بود. همچنین برای شناسایی و قرار دادن انواع سوختهای خالص (D100، K100، WCO100، SUN100) در یک گروه (Pure) و انواع سوختهای ناخالص در گروه دیگر (Impure) این روش‌ها با دقت بالا قادر به تفکیک هرکدام از سوخت‌های خالص از ترکیبهای سوختی دیزل- بیودیزل در زمان‌های ذخیره‌سازی مختلف است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Storage Time on Identification and Separation of Different Biodiesel Fuel Blends Using an Electronic Nose

نویسندگان [English]

  • Osman Mobaraki 1
  • Mostafa Mostafaei 2
  • Leila Naderloo 1
1 Mechanical of Biosystems Engineering Department, Faculty of Agriculture, Razi University, Kermanshah, Iran
2 Engineering of Biosystems Department, Agricultural Faculty, University of Tabriz, Tabriz, Iran
چکیده [English]

Introduction
Energy, as one of the most critical and essential factors of production, plays a vital role in human life. With fossil fuel resources depleting, researchers are exploring alternatives such as biodiesel, a renewable biofuel with properties similar to diesel. Given the growing importance of liquid biofuels, particularly biodiesel, in global markets, it is crucial to ensure high-quality fuel production to gain consumer trust. Additionally, from a commercial perspective, considering fuel storage duration, it is necessary to determine the type of fuel and the biodiesel-to-diesel ratio using accurate, fast, and cost-effective tools.
Materials and Methods
This study aims to identify and differentiate various blends of biodiesel and diesel fuel (2%, 5%, 10%, and 20% by volume) derived from different vegetable oil sources (rapeseed, sunflower, and waste cooking oil) over different storage periods (immediately after production, 1 month, 2 months, and 3 months after production). Biodiesel was first produced from rapeseed oil, sunflower oil, and waste cooking oil using methanol and a potassium hydroxide (KOH) catalyst. Each biodiesel blend was mixed with diesel fuel at the specified ratios and analyzed using an electronic nose system equipped with 10 sensors. Data were collected over different periods (monthly) and analyzed using methods such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM).
Results and Discussion
The results demonstrated the effectiveness of classification methods in separating pure fuels over four months. The accuracy rates were 97%, 100%, 82%, and 82% for SVM; 100%, 100%, 100%, and 98% for QDA; and 100%, 96%, 100%, and 100% for LDA, respectively. These methods were also capable of distinguishing pure fuels (D100, K100, WCO100, SUN100) from biodiesel-diesel blends at various storage times with high precision. 
Among the sensors in the system, four sensors (MQ2, TGS2620, MQ4, and TGS2602) showed the highest sensitivity to biodiesel fuels. The analysis revealed that the separation power of the models decreased during the second month of storage, with the lowest performance observed after two months. This suggests that the most significant structural and physicochemical changes in biodiesel properties occurred during this period. Furthermore, the similarity in performance parameters for fuels derived from sunflower oil and waste cooking oil indicates their shared origin. 
The QDA model outperformed the LDA and SVM models in separating and classifying fuel blends. Using the SVM technique, all 160 data points (40 for pure fuel and 120 for biodiesel-diesel blends) were evaluated. The SVM model achieved a specificity of over 96% for identifying and classifying pure and blended fuels immediately after production. This parameter increased to 94%, 98%, and 99% after the first, second, and third months of storage, respectively.
Conclusion
The study highlights the effectiveness of electronic nose systems combined with advanced classification methods for analyzing biodiesel-diesel blends. The QDA model demonstrated superior performance in fuel classification, while the SVM model also showed high accuracy in distinguishing pure and blended fuels. The findings underscore the importance of monitoring fuel quality over storage periods, as significant changes occur within the first two months. 
Acknowledgment
This research is based on the results of a master's thesis conducted at Razi University. The authors extend their gratitude to the university officials for providing the necessary facilities and support to carry out this study.

کلیدواژه‌ها [English]

  • Biodiesel
  • Classification
  • Discriminant Analysis
  • Electronic Nose
  • Support Vector Machine
Abdulkareem-Alsultan, G., Asikin-Mijan, N., Lee, H., & Taufiq-Yap, Y. (2016). A new route for the synthesis of La-Ca oxide supported on nano activated carbon via vacuum impregnation method for one pot esterification-transesterification reaction. Chemical Engineering Journal, 304, 61-71. https://doi.org/10.1016/j.cej.2016.05.116
Chen, L.-Y., Wu, C.-C., Chou, T.-I., Chiu, S.-W., & Tang, K.-T. (2018). Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification. Sensors, 18(10), 3256. https://doi.org/10.3390/s18103256
Gebremariam, S. N., & Marchetti, J. M. (2018). Economics of biodiesel production. Energy Conversion and Management, 168, 74-84. https://doi.org/10.1016/j.enconman.2018.05.002
Jain, S., & Sharma, M. (2014). Effect of metal contents on oxidation stability of biodiesel/diesel blends. Fuel, 116, 14-18. https://doi.org/10.1016/j.fuel.2013.07.104
Kaushal, S., Nayi, P., Rahadian, D., & Chen, H.-H. (2022). Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture, 12(9), 1359. https://doi.org/10.3390/agriculture12091359
Mahmodi, K., Mostafaei, M., & Mirzaee-Ghaleh, E. (2019). Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose. Fuel, 258, 116114. https://doi.org/10.1016/j.fuel.2019.116114
Mahmodi, K., Mostafaei, M., & Mirzaee-Ghaleh, E. (2022). Detecting the different blends of diesel and biodiesel fuels using electronic nose machine coupled ANN and RSM methods. Sustainable Energy Technologies and Assessments, 51, 101914. https://doi.org/10.1016/j.seta.2021.101914
Moser, B. R., Evangelista, R. L., & Jham, G. (2015). Fuel properties of Brassica juncea oil methyl esters blended with ultra-low sulfur diesel fuel. Renewable Energy, 78, 82-88. https://doi.org/10.1016/j.renene.2015.01.016
Motta, V. V., Simionatto, E. L., Scharf, D. R., Wiggers, V. R., Chiarello, L. M., & Meier, H. F. (2022). The Chemical Characterization of Frying Oil Biodiesel and Relation with the Oxidation Stability. Angolan Mineral, Oil & Gas Journal, 3(3), 26-34. https://doi.org/10.47444/amogj.v3i3.3
Nisar, N., Mehmood, S., Nisar, H., Jamil, S., Ahmad, Z., Ghani, N., Oladipo, A. A., Qadri, R. W., Latif, A. A., & Ahmad, S. R. (2018). Brassicaceae family oil methyl esters blended with ultra-low sulphur diesel fuel (ULSD): Comparison of fuel properties with fuel standards. Renewable Energy, 117, 393-403. https://doi.org/10.1016/j.renene.2017.10.087
Rodrigues, J. S., do Valle, C. P., Uchoa, A. F. J., Ramos, D. M., da Ponte, F. A. F., de Sousa Rios, M. A., de Queiroz Malveira, J., & Ricardo, N. M. P. S. (2020). Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renewable Energy, 156, 1100-1106. https://doi.org/10.1016/j.renene.2020.04.153
Silva, J. B., Almeida, J. S., Barbosa, R. V., Fernandes, G. J., Coriolano, A. C., Fernandes Jr, V. J., & Araujo, A. S. (2021). Thermal oxidative stability of biodiesel/petrodiesel blends by pressurized differential scanning calorimetry and its calculated cetane index. Processes, 9(1), 174. https://doi.org/10.3390/pr9010174
Vidigal, I. G., Siqueira, A. F., Melo, M. P., Giordani, D. S., da Silva, M. L., Cavalcanti, E. H., & Ferreira, A. L. (2021). Applications of an electronic nose in the prediction of oxidative stability of stored biodiesel derived from soybean and waste cooking oil. Fuel, 284, 119024. https://doi.org/10.1016/j.fuel.2020.119024
Xu, L., Yu, X., Liu, L., & Zhang, R. (2016). A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food chemistry, 202, 229-235. https://doi.org/10.1016/j.foodchem.2016.01.144
Xu, M., Wang, J., & Zhu, L. (2019). The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food chemistry, 289, 482-489. https://doi.org/10.1016/j.foodchem.2019.03.080
Yadav, N., Yadav, G., & Ahmaruzzaman, M. (2023). Microwave-assisted production of biodiesel using sulfonated carbon-based catalyst derived from biowaste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 9396-9412. https://doi.org/10.1080/15567036.2023.2238648
Yan, B., Zhang, Y., Chen, G., Shan, R., Ma, W., & Liu, C. (2016). The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energy Conversion and Management, 130, 156-164. https://doi.org/10.1016/j.enconman.2016.10.052
Zhou, W. (2003). Production of sunflower oil ethyl ester for use as a biodiesel fuel. National Library of Canada= Bibliothèque nationale du Canada, Ottawa.