ارزیابی چرخه زندگی میوه هلو در استان مازندران

نویسندگان

1 گروه مهندسی بیوسیستم - دانشکده کشاورزی - دانشگاه بوعلی سینا - همدان- ایران

2 گروه مهندسی بیوسیستم - دانشکده کشاورزی - دانشگاه بوعلی سینا - همدان - ایران

چکیده

افزایش رشد جمعیت سبب افزایش تقاضا برای محصولات کشاورزی و باغی شده و باتوجه‌به محدودیت‌های زمین‌های زراعی باید به دنبال راهبرد افزایش تولید در واحد سطح بود. این راهبرد مستلزم به‌کارگیری انواع نهاده‌های شیمیایی در پرورش محصولات مختلف بوده که استفاده از این نهاده‌ها به دنبال خود آثار زیان‌بار فراوانی به همراه خواهند داشت. پژوهش حاضر به بررسی تأثیرات محیط‌زیستی (با استفاده از نرم‌افزار SimaPro) در طول دوره رشد یک‌ساله میوه هلو در استان مازندران می‌پردازد. در این مطالعه با استفاده از روش ارزیابی چرخه زندگی و به‌کارگیری روش IMPACT 2002+ شاخص‌های محیط‌زیستی در تولید میوه هلو تعیین گردید. داده‌های ورودی با استفاده پرسش‌نامه و داده‌های خروجی با استفاده از پایگاه ‌داده اکواینونت موجود در نرم‌افزار 9.00.48 SimaPro و روش‌ها و استانداردهای مورداستفاده توسط پژوهشگران در مطالعات قبلی تعیین گردید. بیشترین سهم میزان گرمایش جهانی در طی کلیه مراحل تولید یک تن محصول هلو با مقادیر 3/9 و 1/7 کیلوگرم معادل CO2 مربوط به کود نیتروژن و ماشین­ها محاسبه شد. بیشترین سهم برای اوتریفیکاسیون مربوط به سوخت دیزل به مقدار 00195/0 بر حسب PO4 محاسبه گردید. بیشترین سهم تخریب لایه ازون مربوط به سوخت دیزل و آفت‌کش‌ها که به‌ترتیب با مقادیر 00000466/0 و 00000698/0 برحسب CFC-11eq محاسبه گردید. مهم‌ترین عوامل در میزان شاخص‌های زیست‌محیطی برای تولید یک تن میوه هلو در طی یک سال، کود نیتروژن، استفاده ماشین‌های کشاورزی و همچنین سوخت دیزل مورد استفاده در باغ بوده است. با توجه به نتایج به دست آمده و همچنین تحقیقات صورت گرفته در این زمینه، کود نیتروژن عامل اصلی در شاخص‌های محیط‌زیستی بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Life Cycle Assessment (LCA) of Peach Fruit in Mazandaran Province

نویسندگان [English]

  • Abolfazl Azizi Sharafdar Kalaei 1
  • Hossein Haji Agha Alizadeh 2
  • behdad shadidi 1
1 Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Biosystems Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
چکیده [English]

increase in population growth has increased the demand for agricultural and horticultural products, and given the limitations of arable land, a strategy must be pursued to increase production per unit area. This strategy requires the use of various chemical inputs in the cultivation of various products, which will have many harmful effects. The present study investigated the environmental impacts (using SimaPro software) during the one-year growth period of peach fruit in Mazandaran province. In this study, environmental indicators in peach fruit production were determined using the life cycle assessment and the IMPACT 2002+ method. Input data were determined using a questionnaire and output data were determined using the Ecoinvent database available in SimaPro 9.00.48 software and the methods and standards used by researchers in previous studies. The highest contribution to eutrophication was calculated for diesel fuel at 0.00195 in terms of PO4. The highest contribution to ozone depletion was calculated for diesel fuel and pesticides at 0.00000466 and 0.00000698 in terms of CFC-11eq, respectively. The most important factors in the number of environmental indicators for producing one ton of peach fruit in a year were nitrogen fertilizer, the use of agricultural machinery, and also diesel fuel used in the orchard. According to the results obtained and also the research conducted in this field, nitrogen fertilizer was the main factor in environmental indicators.
Introduction
Environmental risks are a major concern in Iran. On the other hand, agriculture plays a key role in environmental impacts in this country, as this sector is both a producer and consumer of energy and can increase or decrease environmental impacts. Some methods can help reduce the environmental consequences of agricultural production. One of the most common tools for analyzing environmental systems is life cycle assessment. A technique called life cycle assessment (LCA) evaluates a product's possible environmental impact at each stage of production, from the extraction of raw materials to waste management. It would appear vital to look into the environmental effects of peach production in Mazandaran, as it is the province with the highest volume of peach production in Iran. The life cycle assessment of the peach product will be examined and studied in this study as no research has been conducted in Mazandaran province on the evaluation of this product.
Materials and Methods
The majority of the data gathered in the province was in the cities of Neka, Miandoroud, and Sari because they have the largest peach production areas in the province. The quantity of inputs used and the costs incurred were assessed following the creation of the questionnaires and their completion by various gardeners around the province. All peach gardeners in Mazandaran province are included in the research's statistical population. There are roughly 4250 peach orchards in the province overall, based on data gathered from Sari's Agricultural Jihad Department. A simple method of random sampling was applied in this study.
Sima Pro 9.00.48 software was used to enter the data gathered from peach fruit production, and the result was calculated according to one ton of peach fruit. A large amount of information in the database related to every product around the world is stored in this software, at each stage of production the collected data is entered into the software separately and then for the final evaluation of the IMPACT 2002+ model, among the models that There is in the software was selected. The information that was stored in the software was considered as input and other information from the inputs consumed for a production period as well as the coefficients related to the consumption of fuel, fertilizer, etc. were also entered into the software.
Results and Discussion
Overuse of agricultural inputs, such as fossil fuels and chemical fertilizers, has resulted in negative environmental effects, such as increased global warming, a decline in biodiversity, and deterioration of soil quality, such as erosion, compaction, or a decrease in soil organic matter. The amount of global warming index for the production of one ton of peach fruit was calculated to be 120 kg CO2 equivalent, and the largest share of this index belonged to greenhouse emissions and consumption of diesel fuel and nitrogen fertilizer. The amount of ozone depletion potential for the production of one ton of peaches was calculated as 0.00000712 kilograms to CFC-11 eq. The use of diesel fuel and the use of pesticides has had the greatest effect on this environmental index. The number of environmental indicators such as respiratory organic matter, aquatic environmental toxicity, terrestrial environmental toxicity, and soil acidity were calculated as 0.0212, 0.00676, 0.00141, and 0.593 kg equivalent of BD (dichlorobenzene) respectively, that the consumption of nitrogen fertilizer and the use of agricultural machinery during the planting and harvesting of corn have contributed the most to the distribution of these indicators.
Conclusion
The most important factors in the number of environmental indicators for producing one ton of peach fruit in a year were nitrogen fertilizer, the use of agricultural machinery, and diesel fuel. According to the results obtained and the research conducted in this field, nitrogen fertilizer was the main factor in environmental indicators. For better environmental management of peach production, it is recommended that farmers be encouraged to choose fertilizers with low environmental impacts, such as biofertilizers or chemical fertilizers with a lower environmental burden than nitrogen fertilizers. The use of organic fertilizers can also improve performance and reduce the emission of environmental impacts of chemical fertilizers. Environmental regulations such as labeling food products with environmental impacts can also be considered as a way to reduce the environmental impacts of peach production.

کلیدواژه‌ها [English]

  • Diesel Fuel
  • Eutrophication Index
  • Global Warming
  • Sima-Pro Software
Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3), 247-264. http://dx.doi.org/10.1016/S1161-0301(03)00024-8
Cook, B., Costa Leite, J., Rayner, M., Stoffel, S., van Rijn, E., & Wollgast, J. (2023). Consumer interaction with sustainability labelling on food products: A narrative literature review. Nutrients, 15(17), 3837. https://doi.org/10.3390/nu15173837
De Menna, F., Vittuari, M., & Molari, G. (2015). Impact evaluation of integrated food-bioenergy systems: A comparative LCA of peach nectar. Biomass and bioenergy, 73, 48-61. https://doi.org/10.1016/j.biombioe.2014.12.004
Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., & Bannayan, M. (2012). The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, development and sustainability, 14, 979-992. https://doi.org/10.1007/s10668-012-9367-3
Fang, P., Abler, D., Lin, G., Sher, A., & Quan, Q. (2021). Substituting organic fertilizer for chemical fertilizer: Evidence from apple growers in China. Land, 10(8), 858. https://doi.org/10.3390/land10080858
Finnveden, G., & Moberg, Å. (2005). Environmental systems analysis tools–an overview. Journal of Cleaner Production, 13(12), 1165-1173. https://doi.org/10.1016/j.jclepro.2004.06.004
Guinée, J. (2002). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Kluwer Academic Publisher.
Hélias, A., van Der Werf, H. M., Soler, L. G., Aggeri, F., Dourmad, J. Y., Julia, C., ... & Trystram, G. (2022). Implementing environmental labeling of food products in France. The International Journal of Life Cycle Assessment, 27(7), 926-931. https://doi.org/10.1007/s11367-022-02071-8
Hitha, S., Vinaya, C., & Linu, M. (2021). Chapter 13—Organic Fertilizers as a Route to Controlled Release of Nutrients. https://doi.org/10.1016/B978-0-12-819555-0.00013-3
Ingrao, C., Matarazzo, A., Tricase, C., Clasadonte, M. T., & Huisingh, D. (2015). Life cycle assessment for highlighting environmental hotspots in Sicilian peach production systems. Journal of Cleaner Production, 92, 109-120. https://doi.org/10.1016/j.jclepro.2014.12.053
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. & Clark, S. (2014). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183-192. https://doi.org/10.1016/j.jclepro.2013.09.057.
Li, Z., Chen, Y., Meng, F., Shao, Q., Heal, M. R., Ren, F., ... & Xu, W. (2022). Integrating life cycle assessment and a farmer survey of management practices to study environmental impacts of peach production in Beijing, China. Environmental Science and Pollution Research, 29(38), 57190-57203. https://doi.org/10.1007/s11356-022-19780-0
Maarefi, T., Ebrahimian, H., Dehghanisanij, H., Sharifi, M., & Delbaz, R. (2022). Life cycle assessment for major agricultural crops and different irrigation systems around Lake Urmia. Iranian Journal of Irrigation & Drainage, 16(3), 624-638. https://dor.isc.ac/dor/20.1001.1.20087942.1401.16.3.12.3
Michos, M. C., Mamolos, A. P., Menexes, G. C., Tsatsarelis, C. A., Tsirakoglou, V. M., & Kalburtji, K. L. (2012). Energy inputs, outputs and greenhouse gas emissions in organic, integrated and conventional peach orchards. Ecological Indicators, 13(1), 22-28. https://doi.org/10.1016/j.ecolind.2011.05.002
Nikkhah, A., Royan, M., Khojastehpour, M., & Bacenetti, J. (2017). Environmental impacts modeling of Iranian peach production. Renewable and Sustainable Energy Reviews, 75, 677-682. https://doi.org/10.1016/j.rser.2016.11.041
Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2012). Evaluation of environmental impact of crop production using LCA: wheat in Gorgan. Journal of Crop Production, 3(3): 201-218. (In Persian).  https://dorl.net/dor/20.1001.1.2008739.1389.3.3.12.1
Vinyes, E., Gasol, C. M., Asin, L., Alegre, S., & Muñoz, P. (2015). Life Cycle Assessment of multiyear peach production. Journal of Cleaner Production, 104, 68-79. https://doi.org/10.1016/j.jclepro.2015.05.041.
Zarei, M. J., Kazemi, N., & Marzban, A. (2019). Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. Journal of the Saudi Society of Agricultural Sciences, 18(3), 249-255. https://doi.org/10.1016/j.jssas.2017.07.001