توسعه سامانه الکترونیکی برای سنجش نشخوار گاو

نویسندگان

1 گروه مهندسی بیوسیستم - دانشکده کشاورزی- دانشگاه تبریز- تبریز- ایران

2 بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان- سازمان تحقیقات، آموزش و ترویج کشاورزی - کرمان– ایران

3 گروه علوم دامی- دانشکده کشاورزی- دانشگاه تبریز- تبریز- ایران

چکیده

کشاورزی یکی از مهم‌ترین بخش‌های کشور محسوب می‌شود و در این میان، صنعت دامداری جایگاه ویژه‌ای را در این بخش به خود اختصاص داده است. نشخوار از فعالیت‌های مهم دام بوده و وضعیت آن می‌تواند نمایان‌گر سلامتی یا بیماری دام‌ باشد. هر‌گونه شرایط غیر‌عادی در نشخوار حاکی از وجود مشکلاتی است که می‌تواند به کاهش بهره‌وری دام منجر شود، لذا نظارت بر نشخوار دام امری ضروری است. از آن‌‌جایی‌که مشاهده و پایش بصری نشخوار هزینه بالا و دقت پایینی دارد، یک سامانه‌ الکترونیکی  با هدف پایش نشخوار  گاو طراحی و ساخته شد. اجزاء سخت افزاری سامانه شامل آردوینو، شتاب‌سنج، رگلاتور ولتاژ، ماژول وای‌فای، باتری لیتیومی و جا باتری دوتایی می‌باشد. این سامانه در دو حالت گردن‌بندی و پوزه‌ای روی دام ارزیابی گردید. در حالت پوزه‌ای بهترین نتایج با حساسیت 88 درصد، صحت 94 درصد و F-score 94 درصد حاصل شد. در کاربرد عملی، آسایش و راحتی دام در برخورد با سامانه پایش بسیار مهم است.  از این‌رو، بیشترین تلاش برای سبک‌تر و کوچک‌تر ساختن سامانه با طراحی و چاپ برد‌های الکترونیکی به‌صورت SMD صورت گرفت. در ارزیابی نهایی سامانه حساسیت، صحت و F-score آن به‌ترتیب 91 ، 82  و 86 درصد به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of an Electronic System to Measure Cattle Rumination

نویسندگان [English]

  • mahsa javani helan 1
  • hossein navid 1
  • hadi karimi 2
  • ali Hossein Khani 3
  • elnaz Vahedi Tekmehdash 1
1 Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Agricultural Engineering Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Areeo, Kerman, Iran
3 Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Introduction
Agriculture is a vital sector in the country, with the livestock industry playing a significant role. Rumination is a key activity in livestock, and its condition can indicate overall health. Abnormal rumination patterns may signal health issues that can reduce productivity, making monitoring essential. Traditional visual observation is costly and often inaccurate; therefore, an electronic system was developed to monitor cattle rumination.
Materials and Methods
The system utilizes an accelerometer to detect muscle movement in animals. It comprises an Arduino Pro Mini board, ADXL345 accelerometer, LF33CV3 voltage regulator, Wi-Fi module, lithium battery, dual battery holder, and a smartphone. Acceleration data is captured along three directions (X, Y, Z) and transmitted to a smartphone via Wi-Fi. The necessary code was written in the Arduino programming environment. Outlier data were filtered using R software before transferring the remaining data to Excel for further analysis.
Results and Discussion
The system was tested in two configurations: as a necklace and on the snout of livestock. The snout configuration yielded optimal results with 88% sensitivity, 94% precision, and 94% F-score. Ensuring comfort for the livestock while using the monitoring system was crucial; thus, efforts were made to design lighter and smaller electronic components using SMD technology. Final evaluations showed sensitivity at 91%, accuracy at 82%, and F-score at 86%.
Conclusion
The ADXL345 accelerometer with ±8g sensitivity is ideal for measuring acceleration across X, Y, and Z directions due to its low data dispersion and high accuracy. Its affordability and compact size make it suitable for research applications comparable to a priority booklet. A waterproof bag installation proved effective as it maintains sensor position while protecting against environmental factors like rain or humidity.
In this study, the optimal installation location was determined to be on the muzzle due to significant muscle activity during chewing. This positioning allows for accurate acceleration measurements across all three axes during rumination while maximizing accuracy, sensitivity, and F-score. The circuit was installed in SMD mode with minimal error at a compact size on the animal's muzzle, ensuring nearly zero disconnection risk and improved data collection performance.

کلیدواژه‌ها [English]

  • Animal Health
  • Electronic System
  • F-score
  • Precision
  • Rumination
  • Sensitivity
Abeni, F. and Galli, A. (2017). Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. International journal of biometeorology, 61(3), 417-425. https://doi.org/10.1007/s00484-016-1222-z.
Anonymous. (2022). Meat Consumption. United Nations: statistical database-agriculture, food and agricultural organization. (FAO).
Antanaitis, R. Juozaitienė, V. Malašauskienė, D. Televičius, M. Urbutis, M. Rutkaukas, A. and Baumgartner, W. (2022). Identification of changes in rumination behavior registered with an online sensor system in cows with subclinical mastitis. Veterinary Sciences, 9(9), 454. https://doi.org/10.3390/vetsci9090454.
Antanaitis, R. Anskienė, L. Palubinskas, G. Džermeikaitė, K. Bačėninaitė, D. Viora, L. & Rutkauskas, A. (2023). Ruminating, Eating, and Locomotion Behavior Registered by Innovative Technologies around Calving in Dairy Cows. Animals, 13(7), 1257. https://doi.org/10.3390/ani13071257.
Benaissa, S., Tuyttens, F., Plets, D., De Pessemier, T., Trogh, J., Tanghe, E. and Sonck, B. (2017). Behaviours recognition using neck-mounted accelerometers in dairy barns. In 8th European Conference on Precision Livestock Farming (EC-PLF 2017) (pp. 69-76).
Braun, U., Trosch, L., Nydegger, F. and Hassing, M. (2013). Evaluation of eating and rumination behavior in cows using a noseband pressure sensor. BMC veterinary research, 9 (1), 164. https://doi.org/10.1186/1746-6148-9-164.
Burfeind, O., Schirmann, K., Von Keyserlingk, M. A. G., Veira, D. M., Weary, D. M. and Heuwieser, W. (2011). Evaluation of a system for monitoring rumination in heifers and calves. Journal of dairy science, 94(1), 426-430. https://doi.org/10.3168/jds.2010-3239.
Chambers, A. R. M., Hodgson, J. and Milne, J. A. )1981(. The development and use of equipment for the automatic recording of ingestive behaviour in sheep and cattle. Grass and Forage Science, 36(2), 97-105. https://doi.org/10.1111/j.1365-2494.1981.tb01545.x.
Derrick, R. W., Moseley, G. and Wilman, D. )1993(. Intake, by sheep, and digestibility of chickweed, dandelion, dock, ribwort and spurrey, compared with perennial ryegrass. The Journal of Agricultural Science, 120(1), 51-61. https://doi.org/10.1017/S0021859600073585.
Eldesouky, A., Mesias, F. J., Elghannam, A. and Escribano, M. )2018(. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. Journal of Cleaner Production, 200, 28-38. https://doi.org/10.1016/j.jclepro.2018.07.279.
Fournel, S., Rousseau, A. N. and Laberge, B. )2017(. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, 155, 96-123. https://doi.org/10.1016/j.biosystemseng.2016.12.005.
Goldhawk,‌ C., Schwartzkopf-Genswein, K. and Beauchemin, K. A. (2013). Validation of rumination collars for beef cattle. Journal of animal science, 91(6), 2858-2862. https://doi.org/10.2527/jas.2012-5908.
Huzzey, J. M., Veira, D. M., Weary, D. M. and Von Keyserlingk, M. A. G. (2007). Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. Journal of dairy science, 90(7), 3220-3233. https://doi.org/10.3168/jds.2006-807.
Karimi, A. Metabolic and nutritional abnormalities in ruminants. Nameless. 48 pages. (In Persian)
Kooij, E. and Noldus, L. P. (2015). Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture, 118, 111-115. https://doi.org/10.1016/j.compag.2015.08.028.
Kumar, A. and Hancke, G. P. (2014). A zigbee-based animal health monitoring system. IEEE sensors Journal, 15(1), 610-617. https://doi.org/10.1109/JSEN.2014.2349073.
Lindgren, E. (2009). Validation of rumination measurement equipment and the role of rumination in dairy cow time budgets. [master’s thesis]. Uppsala, Sweden: Swedish University of Agricultural Sciences.
Lopreiato, V., Minuti, A., Cappelli, F. P., Vailati-Riboni, M., Britti, D., Trevisi, E. and Morittu, V. M. (2018). Daily rumination pattern recorded by an automatic rumination-monitoring system in pre-weaned calves fed whole bulk milk and ad libitum calf starter. Livestock Science, 212, 127-130. https://doi.org/10.1016/j.livsci.2018.04.010.
Meen, G. H., Schellekens, M. A., Slegers, M. H. M., Leenders, N. L. G., van Erp-van der Kooij, E. and Noldus, L. P. (2015). Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture, 118, 111-115. https://doi.org/10.1016/j.compag.2015.08.028.
Müller, R. and Schrader, L. (2003). A new method to measure behavioural activity levels in dairy cows. Applied Animal Behaviour Science, 83(4), 247-258. https://doi.org/10.1016/S0168-1591(03)00141-2.
Reith, S., Brandt, H. and Hoy, S. (2014). Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livestock Science, 170, 219-227. https://doi.org/10.1016/j.livsci.2014.10.013.
Schirmann, K., von Keyserlingk, M. A., Weary, D. M., Veira, D. M. and Heuwieser, W. (2009). Validation of a system for monitoring rumination in dairy cows. Journal of Dairy Science, 92(12), 6052-6055. https://doi.org/10.3168/jds.2009-2361.
Stangaferro, M. L., Wijma, R., Caixeta, L. S., Al-Abri, M. A. and Giordano, J. O. (2016). Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. Journal of Dairy Science, 99(9), 7395-7410. https://doi.org/10.3168/jds.2016-10907.
Stobbs, T. H. and Cowper, L. J. (1972). Automatic measurement of the jaw movements of dairy cows during grazing and rumination. Tropical Grasslands, 6(2), 107-112.
Topp-Becker, J. and Ellis, J. D. (2017). The role of sustainability reporting in the agri-food supply chain. Journal of Agriculture and Environmental Sciences, 6(1), 17-29. https://doi.org/10.15640/jaes.v6n1a2.