بررسی عملکرد هاضم‌ بافل‌دار نیمه‏پیوسته Plug-Flow و هاضم گسسته در تولید بیوگاز از فضولات گاو تحت تأثیر غلظت‌های مختلف نانوذرات Fe3O4

نویسندگان

1 1- گروه مهندسی بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

هدف از این پژوهش بررسی عملکرد هاضم ابداعی از نوع بافل‏دار جریان پلاگ سه مرحله‏ای و همچنین مقایسه آن با هاضم ناپیوسته بر میزان بیوگاز و متان حاصل از هضم بی‏هوازی فضولات گاوی تحت تأثیر غلظت‌های مختلف نانوذرات Fe3O4 است.  برای انجام آزمایش‌ها از 4 هاضم جریان گسسته پلاستیکی شفاف که حجم هرکدام 4 لیتر بود و 4 هاضم 12 لیتری جریان نیمه‏پیوسته افقی مجهز به همزن مکانیکی خودکار استفاده شد. تمامی هاضم‏ها درون یک انکوباتر در دمای °C37 و به مدت 45 روز قرار گرفتند. برای آزمایشها از 3 غلظت متفاوت 50، 100 و 200 میلیگرم بر لیتر از نانوذرات Fe3O4 در مخلوط فضولات گاو و یک نمونه شاهد فاقد نانوذرات استفاده‌شد. آزمایش‏ها در 3 تکرار و در قالب طرح کاملاً تصادفی انجام شد.  به‌طور کلی افزودن نانوذرات باعث افزایش تولید بیوگاز و متان شد. بیشترین مقدار بیوگاز و متان برای هاضم گسسته از هاضم حاوی 100 میلی‌گرم بر لیتر نانوذرات به ترتیب حدود 37 و 12 لیتر بهدست آمد، که نشان دهنده افزایش 41 درصدی بیوگاز و 51 درصدی متان نسبت به هاضم شاهد است. همچنین، بیشترین مقدار بیوگاز و متان برای هاضم نیمه‌پیوسته از هاضم حاوی 100 میلی‌گرم بر لیتر نانوذرات به ترتیب حدود 166 و 19 لیتر بهدست آمد، که نشان دهنده افزایش 36 درصدی بیوگاز و 48 درصدی متان نسبت به هاضم شاهد است. تفاوت مقدار متان و بیوگاز تولیدی برای هاضم شاهد و هاضم حاوی 200 میلی‌گرم بر لیتر نانوذرات ناچیز بود. همچنین بر اساس نتایج تجزیه واریانس هاضم نیمه‏پیوسته عملکرد بهتری نسبت به هاضم گسسته داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance Evaluation of Semi-continuous Plug-Flow Baffled Digester and Batch Digester for Biogas Production from Cattle Manure under the Influence of Different Fe3O4 Nanoparticle Concentrations

نویسندگان [English]

  • Alireza Kolouri 1
  • T. Mesri Gundoshmian 1
  • r. tabatabaei 2
  • ahmadi mansor 1
1 Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Farm Machinery, Sari University of Agricultural Sciences & Natural Resources, Iran
چکیده [English]

Introduction
A stable and readily available energy supply is of paramount importance for economic development. This is evidenced by historical global competition for energy resources, which has been driven by their significance for national security and governmental stability. The current global energy consumption trend presents significant resource depletion and environmental degradation challenges. Two principal solutions are put forth: the enhancement of energy efficiency and the transition to renewable energy sources, with the latter being the optimal long-term strategy. Nanoparticles, due to their minute size, diverse shapes, high reactivity, and stability, have garnered considerable research interest. This study assesses the impact of Fe₃O₄ nanoparticles on the anaerobic digestion of cow manure in two types of digesters: discontinuous and semi-continuous.
Materials and Methods
This study utilized four transparent plastic batch-flow digesters, each with a volume of 4 liters, and four semi-continuous horizontal plug-flow digesters, constructed from a combination of PVC and plexiglass pipes. The length of the digesters was approximately 120 centimeters, divided into three sections by two baffles to create a three-stage digester system. The volume of each digester was approximately 12 liters, resulting in a volume of approximately 4 liters per section. Each section was furnished with a gas discharge valve and an inspection and sampling port. The four digesters were situated within an enclosure. The experiments were conducted at temperatures suitable for mesophilic organisms. A thermostat module and two 1000-watt heaters were employed to regulate the temperature. Two fans were positioned behind the heaters to facilitate air circulation. To prevent the accumulation of sediment, clogging, and the formation of foam on the surface of the substrate, and to ensure the uniform dispersion of nanoparticles within the substrate, agitators were installed within the digesters. The experiments were conducted using iron oxide nanoparticles with a diameter of 50-100 nanometers, manufactured by Sigma-Aldrich. Three different concentrations of Fe3O4 nanoparticles were utilized: 50, 100, and 200 milligrams per liter, respectively, for the first, second, and third experiments.
Results and Discussion
During the initial four-day period, digesters one, two, and three generated greater quantities of biogas than the control in both batch and plug-flow systems, despite the overall low production levels observed initially. Digester 2 in the batch system demonstrated the highest biogas production, with a volume of approximately 37 liters over 39 days, representing a 41% increase compared to the control. In the plug-flow system, digesters 2 and 3 produced 165.68 and 149.45 liters of biogas, respectively, representing a 36% and 23% increase over the control. The biogas production of Digester 3 was comparable to that of the control. The decomposition of organic matter was found to be accelerated by lower concentrations of Fe₃O₄ nanoparticles, while higher concentrations were observed to inhibit anaerobic digestion. The highest methane production in the batch system was 11.94 liters in digester 2, representing a 51% increase over the control, while digesters 1 and 3 exhibited comparatively smaller increases. It is necessary to allow sufficient time for methanogenic microorganisms to adapt to additions of nanoparticles. In the plug-flow system, digester 2 produced a total of 50.3 liters of methane, representing a 48% increase over the control. This result demonstrates the effectiveness of a 100 mg/L dose. The findings indicate that there is no linear relationship between nanoparticle concentration and methane production. Instead, effective concentrations vary based on nanoparticle size and other factors.
Conclusion
The study revealed that the incorporation of nanoparticles into anaerobic digestion processes enhances biogas and methane production. However, the optimal concentration of nanoparticles varies depending on the specific conditions, feedstock type, and size of the system. The highest biogas and methane production was observed at 100 mg/L in a semi-continuous digester, with a 36% and 48% increase, respectively. The highest biogas and methane production was observed in tank number two (36%), followed by tank number three (34%), and the lowest in tank number one (29%). This indicates that biogas production necessitates an adequate period for microorganisms to effectively engage in methanogenesis.

کلیدواژه‌ها [English]

  • Anaerobic Digestion
  • Biogas
  • Methane
  • Plug-flow digester
  • Semi-continuous Digester
Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2017). Influence of zero-valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy, 120, 842-853. https://doi.org/10.1016/j.energy.2016.11.137
Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2016). Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87, 592-598. https://doi.org/10.1016/j.renene.2015.10.053
Aguilar-Moreno, G. S., Navarro-Cerón, E., Velázquez-Hernández, A., Hernández-Eugenio, G., Aguilar-Méndez, M. Á., & Espinosa-Solares, T. (2020). Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles. Renewable Energy, 147, 204-213. https://doi.org/10.1016/j.renene.2019.08.111
Ahmadi Pirlou, M, & Mesri Gundoshmian, T. (2021). Evaluating the Effect of Alkaline Pretreatment on Improvement of Biomethane Production from Anaerobic Digestion of Mixed Municipal Waste and Sewage Sludge. Research in Environmental Health, 7(1), 53-66. (in Persian with English abstract). https://doi.org/10.22038/jreh.2021.56792.1416
Ahmadi Pirlou, M, Mesri Gundoshmian, T, & Rasekh. M. (2023). Effects of different concentrations of zero-valent iron nanoparticles on biogas production from co-digestion of municipal solid waste and sewage sludge. Environmental Science Studies, 8(1), 5910-5921. (in Persian with English abstract). https://doi.org/10.22034/jess.2022.313870.1678
Ahamed, A., Chen, C. L., Rajagopal, R., Wu, D., Mao, Y., Ho, I. J. R., ... & Wang, J. Y. (2015). Multi-phased anaerobic baffled reactor treating food waste. Bioresource Technology, 182, 239-244.
Ali, A., Mahar, R. B., Soomro, R. A., & Sherazi, S. T. H. (2017). Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1815-1822. https://doi.org/10.1080/15567036.2017.1384866
Alkhrissat, T., Kassab, G., & Abdel-Jaber, M. T. (2023). Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge. Energies, 16(15), 5844. https://doi.org/10.3390/en16155844
American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011
Benali, M. (2019). Experimental investigation of biogas production from cow dung in an anaerobic batch digester at mesophilic conditions. Iranica Journal of Energy & Environment, 10(2), 121-125. https://doi.org/10.5829/ijee.2019.10.02.09
Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., ... & Puntes, V. (2014). Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small, 10(14), 2801-2808. https://doi.org/10.1002/smll.201303703
Chinwetkitvanich, S., & Ruchiraset, A. (2017). The anaerobic baffled reactor (ABR): Performance and microbial population at various COD loading rates. GEOMATE Journal, 12(33), 78-84. https://doi.org/10.21660/2017.33.2588
Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., & Aulenta, F. (2014). Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental science & technology, 48(13), 7536-7543. https://doi.org/10.1021/es5016789
Dölle, K., Hughes, T., & Kurzmann, D. E. (2020). From fossil fuels to renewable biogas production from biomass based feedstock—a review of anaerobic digester systems. Journal of Energy Research and Reviews, 5(3), 1-37. https://doi.org/10.9734/jenrr/2020/v5i330147
Fu, L., Zhou, T., Wang, J., You, L., Lu, Y., Yu, L., & Zhou, S. (2019). NanoFe3O4 as solid electron shuttles to accelerate acetotrophic methanogenesis by Methanosarcina barkeri. Frontiers in Microbiology, 10, 388. https://doi.org/10.3389/fmicb.2019.00388
Ganzoury, M. A., & Allam, N. K. (2015). Impact of nanotechnology on biogas production: a mini-review. Renewable and Sustainable Energy Reviews, 50, 1392-1404. https://doi.org/10.1016/j.rser.2015.05.073
Gong, L., Yang, X., You, X., Wang, J., Zhou, J., Zhou, Y., & Yang, J. (2021). Explore the effect of Fe3O4 nanoparticles (NPs) on anaerobic digestion of sludge. Environmental Technology, 42(10), 1542-1551. https://doi.org/10.1080/09593330.2019.1673829
Hassanpourmoghadam, L., Goharrizi, B. A., Torabian, A., Bouteh, E., & Rittmann, B. E. (2023). Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge. Biomass and Bioenergy, 169, 106692. https://doi.org/10.1016/j.biombioe.2022.106692
Hassanein, A., Lansing, S., & Tikekar, R. (2019). Impact of metal nanoparticles on biogas production from poultry litter. Bioresource technology, 275, 200-206. https://doi.org/10.1016/j.biortech.2018.12.048
Hsieh, P. H., Lai, Y. C., Chen, K. Y., & Hung, C. H. (2016). Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. International Journal of Hydrogen Energy, 41(46), 21685-21691. https://doi.org/10.1016/j.ijhydene.2016.06.197
Kato, S., Hashimoto, K., & Watanabe, K. (2012). Methanogenesis facilitated by electric syntrophy via (semi) conductive iron‐oxide minerals. Environmental microbiology, 14(7), 1646-1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
Khalid, M. J. (2018). Synergistic Effect of Alkaline Pretreatment and Iron Oxide Nanoparticles on Biogas Production from Rice Straw (Doctoral dissertation, IESE (SCEE) NUST). https://doi.org/10.1016/j.biortech.2018.12.051
Łebkowska, M., Rutkowska-Narożniak, A., Pajor, E., & Pochanke, Z. (2011). Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresource technology, 102(19), 8777-8782. https://doi.org/10.1016/j.biortech.2011.07.040
Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied energy, 240, 120-137. https://doi.org/10.1016/j.apenergy.2019.01.243
Liu, Y., Zhang, Y., & Ni, B. J. (2015). Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water research, 75, 292-300. https://doi.org/10.1016/j.watres.2015.02.056
Purdy, A., Pathare, P. B., Wang, Y., Roskilly, A. P., & Huang, Y. (2018). Towards sustainable farming: Feasibility study into energy recovery from bio-waste on a small-scale dairy farm. Journal of Cleaner Production, 174, 899-904. https://doi.org/10.1016/j.jclepro.2017.11.018
Puyol, D., Flores-Alsina, X., Segura, Y., Molina, R., Padrino, B., Fierro, J. L. G. & Martínez, F. (2018). Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process. Chemical Engineering Journal, 335, 703-711. https://doi.org/10.1016/j.cej.2017.11.029
Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies, 12(6), 1106. https://doi.org/10.3390/en12061106
Sekoai, P. T., Ouma, C. N. M., Du Preez, S. P., Modisha, P., Engelbrecht, N., Bessarabov, D. G., & Ghimire, A. (2019). Application of nanoparticles in biofuels: an overview. Fuel, 237, 380-397. https://doi.org/10.1016/j.fuel.2018.10.030
Su, L., Shi, X., Guo, G., Zhao, A., & Zhao, Y. (2013). Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. Journal of Material Cycles and Waste Management, 15, 461-468. https://doi.org/10.1007/s10163-013-0150-9
Ugwu, S. N., Biscoff, R. K., & Enweremadu, C. C. (2020). A meta-analysis of iron-based additives on enhancements of biogas yields during anaerobic digestion of organic wastes. Journal of Cleaner Production, 269, 122449. https://doi.org/10.1016/j.jclepro.2020.122449
Yazdani, M., Ebrahimi-Nik, M., Heidari, A., & Abbaspour-Fard, M. H. (2019). Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge. Renewable Energy, 135, 496-501. https://doi.org/10.1016/j.renene.2018.12.019
Yin, Q., Yang, S., Wang, Z., Xing, L., & Wu, G. (2018). Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chemical Engineering Journal, 333, 216-225. https://doi.org/10.1016/j.cej.2017.09.160
Zhang, J., Loh, K. C., Lee, J., Wang, C. H., Dai, Y., & Wah Tong, Y. (2017). Three-stage anaerobic co-digestion of food waste and horse manure. Scientific reports, 7(1), 1269. https://doi.org/10.1038/s41598-017-01408-w
Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., & Guo, Y. (2020). Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism. Renewable Energy, 146, 2724-2735. https://doi.org/10.1016/j.renene.2019.08.078
Zhao, Z., Zhang, Y., Li, Y., Quan, X., & Zhao, Z. (2018). Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion. Water Research, 144, 126-133. https://doi.org/10.1016/j.watres.2018.07.028