مقایسه انحراف مکانی-زمانی محصولات زراعی تولیدی در ایران بر مبنای الگوی کشت بهینه کشور

نویسنده

مکانیک ماشین‌های کشاورزی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه آزاد اسلامی واحد اصفهان )خوراسگان(

چکیده

هدف از پژوهش حاضر توسعه نقشه‌های مکانی-زمانی محصولات زراعی تولید شده در استان‌های کشور (در پنج گروه غلات، حبوبات، نباتات علوفه‌ای، گیاهان صنعتی و سبزیجات) با استفاده از کتابخانه tmap نرم افزار RStudio است. داده‌های خام مورد استفاده در این پژوهش از جداول آماری ارائه شده توسط مرکز آمار وزارت جهاد کشاورزی در مورد مقدار محصولات زراعی تولید شده در استان‌های ایران در دوره زمانی 1395 تا 1399 به دست آمد. همچنین در این پژوهش مقایسه استان‌های کشور با توجه به انحراف گروه‌های محصولات زراعی تولید شده از توصیه الگوی کشت، انجام شد. بر اساس نتایج به‌دست آمده از نظر میزان انحراف پنج گروه محصولات زراعی از توصیه الگوی کشت، انحراف زیاد برای استان‌های گیلان، البرز و یزد و سپس استانهای بوشهر، تهران و فم ثبت شد. از نظر عددی، میانگین انحرافات برای استان‌های گیلان، البرز و یزد به ترتیب %5/72، %72 و %95/70 بود. از سوی دیگر میانگین انحراف مطلق مقدار محصولات تولیدی گروه غلات و سبزیجات از توصیه الگوی کشت به ترتیب %9/5 و %7/11 بود، در حالیکه مقادیر مربوط به گروه‌های حبوبات، نباتات علوفه‌ای و گیاهان صنعتی به ترتیب %2/30، %36 و %2/41 به ‌دست آمد. همچنین انجام خوشه‌بندی استان‌های کشور با روش‌های K-میانگین و K-میانه نشان داد که با افزایش تعداد خوشه‌ها نتایج به دست آمده از این دو روش خوشه‌بندی به هم نزدیک می شوند. در نهایت در صورت وجود خوشه‌ها با تقارن مرکزی و با تعویض متقابل الگوی کشت می‌توان تولید محصولات زراعی را در جهت انطباق با الگوی کشت تغییر داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Spatial-Temporal Deviations of Agricultural Crops Produced in Provinces of Iran Based on the Official Optimum Cultivation Pattern

نویسنده [English]

  • Iman Ahmadi
Department of genetics and plant production engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

Introduction
Nowadays, due to the availability of large amounts of data, data analysis approaches have shown their potential to solve some problems in different economic sectors, for example, the concept of big data analysis has entered various disciplines, such as insurance, banking, agriculture, and environmental studies. Data analysis is performed using one of these three methods, i.e. regression analysis, clustering, and classification. To estimate the relationship between one or more independent variable(s) and a single dependent one, the regression analysis is used; a set of methods that allow the grouping of different agricultural objects is performed by clustering; and classification aims to categorize objects based on their properties, which are called predictors. Some categories of software tools are used for big data analysis such as image processing, machine learning, cloud-based platforms for large-scale information storing, analysis and computation, GIS systems, modeling and simulation, statistical tools, and time-series analysis. The R programming language, an open-source software, is a powerful platform to conduct big data analysis requiring machine learning processes, and statistical operations. This software also acts as a suitable tool for data visualization.
Materials and Methods
The aim of this research is the development of spatio-temporal maps of the value of agricultural crops (in five groups named cereals, legumes, industrial crops, vegetables, and fodder crops) produced in provinces of Iran using the tmap package of the RStudio software. The raw data used in this study was obtained from statistical tables presented by the Ministry of Agriculture Jihad statistics center about the value of different agronomy crops produced in 31 provinces from 2016 to 2020. Furthermore, in this study, some statistical methods were used to compare provinces based on the spatial-temporal deviations of agricultural crops produced from Iran’s official cultivation pattern. The clustering methods utilized herein were the K-means and K-medians methods of the partitioning clustering paradigm, and a hierarchical clustering method.
Results and Discussion
According to the results of this study, large deviations were recorded for Gilan, Alborz, and Yazd provinces followed by Bushehr, Tehran, and Qom provinces. Numerically, average deviations for the three leading provinces were 72.5%, 72%, and 70.95%, respectively. Furthermore, the average absolute deviations of crop yields in the cereals and vegetables categories from the official crop pattern were 5.9%, and 11.7% respectively; while similar measures for the legumes, fodder, and industrial crop categories were 30.2%, 36%, and 41.2% respectively. Moreover, clustering Iran provinces using the K-means and K-medians methods showed that by increasing the number of clusters, the results of these methods converge. Finally, from the practical vantage point, if the clustering curve contains clusters having central symmetry, by exchanging the cultivation patterns of these clusters, the yields of agronomy crops will be changed in the direction of matching the suggestions of the official cultivation pattern.
Conclusion
It is concluded that the existence of reliable input data of agricultural crops produced in provinces, the creation of spatial-temporal maps, and clustering provinces based on the deviations of crops produced in them from the official cultivation pattern helps main decision makers to obtain an appropriate view to establish suitable laws in compliance with matching the real production of agricultural crops with the suggestions of the cultivation pattern.
Acknowledgment
This study has been conducted as an interior research project of Islamic Azad University- Isfahan (Khorasgan) branch No. 698. The author appreciates the university vice chancellor of research for its financial resources.

کلیدواژه‌ها [English]

  • Clustering
  • Cultivation Pattern of Agricultural Crops
  • Rstudio Software
  • Spatial-Temporal Map
Ahmadi, I. (2023). A spatiotemporal analysis of the continent-wide contribution of agriculture in CO2-eq production from 1990 to 2019 using the t-map package of R software. Journal of nature and spatial sciences, 3(2), 17–24. https://doi.org/10.30495/jonass.2023.1974762.1060.
Anonymous. (2019). Optimal cultivation pattern; A prerequisite for sustainable agriculture and food security, Report serial number: 25016740. Infrastructure studies office of the Islamic Council Research Center, Tehran (In Farsi).
Batko, K., Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. J Big Data. 9, 3. https://doi.org/10.1186/s40537-021-00553-4.
Cooper, J., Noon, M., Jones, C., Kahn, E. and Arbuckle, P. (2013). Big data in life cycle assessment. J. Ind. Ecol. 17 (6), 796–799. https://doi.org/10.1111/jiec.12069.
Dashti, Gh., & Ghaderinejad, P. (2013). Cropping Pattern of Agronomy Products in View of Relative Advantage in Ilam Province. Journal of Agricultural Economics and Development. 27(3), 195-203. (In Persian). https://doi.org/10.22067/jead2.v0i0.29538.
FarajiSabokbar, H., Rezvani, M.R., Jamshidi, F, & Tahmasi, B. (2021a). Analysis of spatio-temporal pattern of Cereals cultivation in Iran. Journal of Physical Development Planning, 6(2), 125-142. (In Persian). https://doi.org/10.30473/psp.2021.55669.2377.
FarajiSabokbar, H., Rezvani, M.R., Jamshidi, F, & Tahmasi, B. (2021b). Analysis of spatio-temporal pattern of cereals production in Iran. Journal of Geography and Spatial Systems, 2(1), 16-36. (In Persian).
FarajiSabokbar, H., Rezvani, M.R., Jamshidi, F, & Tahmasi, B. (2021c). Spatio-Temporal Pattern Analysis of Cereal Yield in Iran. Studies of Nomads Area Plannig, 1(1), 33-46. (In Persian). https://dor.isc.ac/dor/20.1001.1.28210530.1400.1.1.4.2.
Frelat, R., Lopez-Ridaura, S., Giller, K. E., Herrero, M., Douxchamps, S., Andersson Djurfeldt, A., Erenstein, O., Henderson, B., Kassie, M., Paul, B. K., Rigolot, C., Ritzema, R. S., Rodriguez, D., van Asten, P. J. and van Wijk, M. T. (2016). Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. 113(2), 458-463. https://doi.org/10.1073/pnas.1518384112.
Guleria, D., Kaur, G. (2021), Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019, Library Hi Tech, Vol. 39 No. 4, pp. 1001-1024. https://doi.org/10.1108/LHT-09-2020-0218.
Kamilaris, A., Kartakoullis, A. and Prenafeta-Boldú F. X. (2017). A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23-37. https://doi.org/10.1016/j.compag.2017.09.037.
Kempenaar, C., Lokhorst, C., Bleumer, E. J. B., Veerkamp, R. F., Been, Th., Evert, F. K. van, Boogaardt, M. J., Ge, L., Wolfert, J., Verdouw, C. N., Bekkum, M. A. van, Feldbrugge, L., Verhoosel, J. P. C., Waaij, B. D. van der, Persie, M. van, and Noorbergen, H. (2016). Big data analysis for smart farming: results of TO2 project in theme food security, vol. 655 Wageningen University & Research.
Koocheki, A., Nassiri Mahallati, M., Zarea Fizabadi, A., & Jahanbin, G. (2004). Diversity of cropping systems in Iran. Pajouhesh & Sazandegi, 63, 70-83. (In Persian).
Smith, P., 2013. Delivering food security without increasing pressure on land. Glob. Food Secur. 2, 18–23. https://doi.org/10.1016/j.gfs.2012.11.008.
Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Ghassemi, S., Vadez, V., Sinclair, T.R., & van Ittersum, M.K. (2020). Modeling plant production at country level as affected by availability and productivity of land and water. Agric. Syst., 183. Article 102859.  https://doi.org/10.1016/j.agsy.2020.102859.
Tesfaye, K., Sonder, Kai., Caims, J., Magorokosho, C., Tarekegn, A., Kassie, Girma T., Getaneh, F., Abdoulaye, T., Abate, T. and Erenstein, O. (2016). Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data. International Food and Agribusiness Management Review. 19(A), 1–18.
Waga, D. and Rabah, K. (2014). Environmental conditions’ big data management and cloud computing analytics for sustainable agriculture. World J. Comput. Appl. Technol. 2(3), 73–81. https://doi.org/10.13189/wjcat.2014.020303.
Ye, S., Ren, S., Song, C., Cheng, C., Shen, S., Yang, J., & Zhu, D. (2022). Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ., 326, Article 107757. https://doi.org/10.1016/j.agee.2021.107757