تحلیل انرژی تولید گوجه‌فرنگی در فضای باز و گلخانه

نویسندگان

گروه مهندسی کشاورزی - دانشکده کشاورزی - دانشگاه پیام نور - تهران - ایران

چکیده

یکی از محصولات پرمصرف کشاورزی در کشور گوجه‌فرنگی است. با توجه به اظهارات گلخانه‌داران، با قیمت‌های سال 1400 که بین 4 تا 6 هزار تومان متغیر برای هر کیلوگرم گوجه‌فرنگی گلخانه‌ای است، تولید گلخانه‌ای گوجه‌فرنگی به صرفه نیست. لذا در این پژوهش مقدار و بهره‌وری مصرف نهاده‌های تولید این سیستم مورد بررسی قرار گرفت. داده‌های مورد نیاز برای این مطالعه با تهیه پرسشنامه (به صورت مصاحبه حضوری با کشاورزان و مشاهده مراحل مختلف تولید) بدست آمد. به منظور برآورد انرژی مصرفی در جریان تولید گوجه‌فرنگی، ابتدا تمام نهاده‌های مصرفی و خروجی مربوطه تعیین و اندازه‌گیری شد، سپس با استفاده از معادل انرژی مربوط به هر یک از نهاده یا محصول تولید شده و ضرب این معادل در مقدار نهاده مصرف شده یا محصول تولید شده، انرژی ورودی و خروجی محاسبه گردید. نتایج نشان داد کل انرژی ورودی تولید گوجه‌فرنگی در سیستم فضای باز و گلخانه به ترتیب ۱۵۴/۷۳ و ۱۲۴۵/۶۵، و انرژی کل خروجی ۷۳/۸۱ و ۲۲۵/۸۹ گیگاژول بر هکتار بود. الکتریسیته با سهم ۶۰ درصد از کل انرژی مصرفی به عنوان پر مصرف‌ترین نهاده انرژی برای تولید گوجه‌فرنگی در فضای باز بدست آمد. در حالی که گاز مصرفی با سهم 5/65 درصد از کل انرژی مصرفی به عنوان پر مصرف‌ترین نهاده انرژی برای تولید گوجه‌فرنگی در سیستم گلخانه بدست آمد. دومین نهاده انرژی‌بر در تولید گوجه‌فرنگی فضای باز، کود شیمیایی با ۱۰ درصد انرژی مصرفی بود. در حالی که در تولید گوجه‌فرنگی گلخانه سوخت دیزل با ۲۱ درصد انرژی مصرفی به عنوان دومین نهاده انرژی بر مشخص شد. درآمد کل در تولید گوجه‌فرنگی در سیستم گلخانه بیشتر از مقادیر فضای باز در تولید این محصول می‌باشد. مقادیر درآمد کل در تولید گوجه‌فرنگی در فضای باز و گلخانه به ترتیب۷۳ و ۲۴۲ میلیون تومان بود. این امر ناشی از قیمت فروش بیشتر در موقع عرضه به بازار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy Analysis of Tomato Production in Open Field and Greenhouse

نویسندگان [English]

  • esmaeil seidi
  • Masoud Momeni
Department of Agricultural Engineering, Payame Noor University, Tehran, Iran
چکیده [English]

Introduction
Today, farmers are striving to increase their yields, but many lack the necessary information to analyze energy consumption patterns effectively. Therefore, conducting an energy analysis is essential to provide farm planners and policymakers with a comprehensive overview of energy consumption. Energy input-output analysis is closely linked to agricultural practices, including input quantities, production levels, and environmental factors. The greenhouse industry has been active for several years, but due to a lack of awareness among those involved in the field, many producers struggle to achieve profitable outcomes. Moreover, this oversight can lead to significant environmental harm due to excessive energy consumption at the end of the production process. This research investigates the cultivation of various crop types grown in greenhouses, drawing on studies conducted by other researchers in the field.
Materials and Methods
The energy consumption involved in cultivating tomatoes was compared between field and greenhouse methods. Data was gathered through a questionnaire, which included general information about cultivation types, water resources, product inputs, and machinery used. Direct and indirect energy inputs were classified, and energy indexes were calculated based on this information. Statistical methods were employed to analyze the collected data. To estimate the energy consumed during tomato production, we first identified and measured all inputs and outputs. The energy associated with each input and output was then calculated by using the energy equivalent for each, multiplying it by the amount of input consumed or product produced.
Results and Discussion
The results indicated that total energy consumption for conventional farming systems was 81.73 GJ/ha, while for greenhouse systems it was significantly higher at 89.225 GJ/ha. In conventional systems, the primary energy input was electricity, followed by fertilizer. In contrast, for greenhouse systems, natural gas was the main energy source, with diesel as the second most utilized input. Despite the much higher energy consumption in greenhouse systems, the total income from greenhouse-grown tomatoes was three times greater than that from field-grown tomatoes. A key factor contributing to this higher income is the timing of product sales, as tomatoes from greenhouses are available in autumn, winter, and spring, periods when field tomatoes are scarce in the market.
Conclusion
Firstly, reducing energy consumption in this sector lowers production costs and increases profitability, while also ensuring the production of high-quality products. Secondly, by adopting new methods, we can minimize the inappropriate use of energy in production (such as fossil fuels, water, fertilizers, and pesticides), which often leads to environmental destruction. Ultimately, implementing a greenhouse production system may be a more effective approach for the region. However, it is essential to incorporate innovations such as sustainable energy systems and optimal design parameters for structures and buildings.
The results of this study highlight the inefficiency of energy consumption in tomato cultivation. It was found that farmers do not properly implement the air-pile system in open-air cultivation, leading to inefficient water usage. This issue could be addressed by adopting modern irrigation methods used in the greenhouse sector. Additionally, the amount of fertilizer applied in tomato production is also inefficient. This inefficiency may stem from the inadequate use of chemical fertilizers based on soil tests.
The electricity consumed during the production process in power plants leads to significant environmental challenges, highlighting the need for cleaner and renewable energy sources for electricity generation. Modern techniques, particularly the use of solar energy, can greatly reduce reliance on fossil fuels and natural gas, while also lowering labor costs. Additionally, government support and incentives aimed at developing infrastructure for clean energy can encourage farmers to adopt these technologies. In greenhouse cultivation, the majority of energy usage comes from natural gas, fuel, and electricity. Therefore, promoting intelligent control systems to manage environmental conditions—such as temperature, humidity, ventilation, and carbon dioxide levels—can significantly decrease energy consumption in this sector.

کلیدواژه‌ها [English]

  • Energy
  • Greenhouse
  • Production Inputs
  • Tomato
Ahmadbeyki, A., Ghahderijani, M., Borghaee, A., & Bakhoda, H. (2023). Energy use and environmental impacts analysis of greenhouse crops production using life cycle assessment approach: A case study of cucumber and tomato from Tehran province, Iran. Energy Reports, 9, 988-999.https://doi.org/10.1016/j.egyr.2022.11.205
Ansari, A., & Hossain, M. S. (2018). Yield potential and land-use efficiency of hybrid rice (Oryza sativa L) in Bangladesh through suitable spacing and number of plants per hill. International Journal of Advanced and Innovative Research, 4, 60-65. https://doi.org/10.4236/as.2022.1310063
Argento, S., Garcia, G., & Treccarichi, S. (2024). Sustainable and Low-Input Techniques in Mediterranean Greenhouse Vegetable Production. Horticulturae, 10(9), 997. https://doi.org/10.3390/horticulturae10090997
Asgharipour, M. R., Mondani, F., & Riahinia, S. (2012). Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. Energy, 44(1), 1078-1084. https://doi.org/10.1016/j.energy.2012.04.023
Beheshti Tabar, I., Keyhani, A. and Rafiee, S., 2010.Energy balance in Iran's agronomy (1990-2006). Renewable and Sustainable Energy Reviews, 14(2), pp.849-855.  https://doi.org/10.1016/j.rser.2009.10.024
Canakci, M. U. R. A. D., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8-9), 1243-1256. https://doi.org/10.1016/j.energy.2005.05.021
Ghaffarpour, Z., Fakhroleslam, M., & Amidpour, M. (2024). Evaluation of the cooling, heating and water demands for tomato production in a solar greenhouse by integrating the solar energy, evapotranspiration and TOMGRO models. Solar Energy, 277, 112710.https://doi.org/10.1016/j.solener.2024.112710
Hatirli, S.A., Ozkan, B. and Fert, C., (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31(4), pp.427-438. https://doi.org/10.1016/j.renene.2005.04.007
Heidari, M. D. and Omid, M. (2011). Energy use pattern and econometric models of major greenhouse vegetable production in Iran. Energy. 36: 220-225.  https://doi.org/10.1016/j.energy.2010.10.048
Kenari, R. E., Karami, Z., & Ahmadzade, S. S. (2017). Impact of Energy Subsidies Elimination on Technology Gap Ratio in Cucumber Production. International Journal of Agricultural Management and Development (IJAMAD), 7(2), 237-244.
Kitani, O. (1999). CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 1 Natural Energy and Biomass, Part 1.3 Biomass Resources. https://doi.org/10.13031/2013.36411
Khoshnevisan, B., Motamed shariati, H. R., Rafiee, Sh. and Mousazadeh, H. (2014). Comparision of energy consumption and GHG emission of open field and greenhouse strawberry production.Renewable and Sustainable Energy Reviews. (29): 316-324. https://doi.org/10.1016/j.rser.2013.08.098
Khoshnevisan, B., Rafiee, Sh., Omid, M., Mousazadeh, H. and Clark, S. (2013). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production.183-192. https://doi.org/10.1016/j.jssas.2017.07.001
Kuswardhani, N., Soni, P., & Shivakoti, G. P. (2013). Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia. Energy, 53, 83-92. https://doi.org/10.1016/j.energy.2013.02.032
Loghmanpour, R., Ghasempour, A. and Mostafavi, S. M. (2013). A comparative study on energy use of greenhouse and open-field cucumber production systems in Iran.International Journal of Agriculture and Crop Sciences. 5(13): 1437-1441. https://doi.org/10.5897/AJAR11.1787
Lopez-Marin, J., Rodriguez, M., del Amor, F. M., Gálvez, A., & Brotons-Martinez, J. M. (2019). Cost-benefit analysis of tomato crops under different greenhouse covers. Journal of Agricultural Science and Technology, 21(2), 235-248.
Moghaddam, P. R., Feizi, H., & Mondani, F. (2011). Evaluation of tomato production systems in terms of energy use efficiency and economical analysis in Iran. Notulae Scientia Biologicae, 3(4), 58-65. https://doi.org/10.15835/nsb.3.4.6279
Mohammadi, A. and Omid, M. (2010). Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran.Applied energy. 87: 191-196 https://doi.org/10.1016/j.apenergy.2009.07.021.
Mosavi, S. H. (2016). Energy price reform and food markets: The case of bread supply chain in Iran. Agricultural Economics, 47(2), 169-179. https://doi.org/10.1111/agec.12192
Nikolaou, G., Neocleous, D., Christou, A., Polycarpou, P., Kitta, E., & Katsoulas, N. (2021). Energy and water related parameters in tomato and cucumber greenhouse crops in semiarid mediterranean regions. A review, part I: Increasing energy efficiency. Horticulturae, 7(12), 521. https://doi.org/10.3390/horticulturae7120521
Nooraeifar, K., Mohammadzamani, D., Gholami, M. and Yousefi, R. (2015). Considering of Energy Indexes of tomato production in Qazvin provience by using DEA method.Journal of Biosystem.Vol 4.No. 4. P. 16-21. (in Persian).
Özcan, K. M., Gülay, E., & Üçdoğruk, Ş. (2013). Economic and demographic determinants of household energy use in Turkey. Energy policy, 60, 550-557. https://doi.org/10.1016/j.enpol.2013.05.046
Pahlavan, R., Omid, M., & Akram, A. (2011). Energy use efficiency in greenhouse tomato production in Iran. Energy, 36(12), 6714-6719. https://doi.org/10.1016/j.energy.2011.10.038
Pourtarverdi, F., Almasi, M. and Bakhoda, H. (2013). Economical and environmental investigation of cucumber cultivation in common and hydrauponic cultivation.8th National congress of agricultural machinery and mechanization.Mashhad. Iran. (in Persian).
Raheli, H., Rezaei, R. M., Jadidi, M. R., & Mobtaker, H. G. (2017). A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Information Processing in Agriculture, 4(4), 342-350.  https://doi.org/10.1016/j.inpa.2017.02.004
Rezvani, M., Langeroudi, S., & Nia, E. (2014). The impact of rural-urban linkages on diversification of the rural economy with emphasis on woodcraft (case study: Jowkar District, Malayer county, and Hamedan province). Indian Journal of Fundamental and Applied Life Sciences ISSN.
Salami, P., Ahmadi, H., Keyhani, A., & Sarsaifee, M. (2010). Strawberry post-harvest energy losses in Iran. Researcher, 2(4), 67-73.
Sha'banzade, M., Esfanjari, R. and Rezaei, A. (2014). Investigating the energy pattern of tomato production in Khorasan Razavi province.Journal of Agricultural Machinery.Vol. 6, No. 2, p. 524-536. (in Persian).  https://doi.org/10.22067/jam.v6i2.37724
Sh, M., & Rahimi, H. (2016). Economic analysis of deficit irrigation for transplanted tomato cultivars. Journal of Water Research in Agriculture, 30(4), 483-495.  https://doi.org/10.3390/agriculture10070297
Taki, M., Ajabshirchi, Y., Abdi, R. and Akbarpour, M. (2012).Analysis of energy efficiency in greenhouse cucumber cultivation with DEA method.Journal of Agricultural Machinery.Vol. 2, No. 1, p. 28-37. (in Persian).  https://doi.org/10.22067/jam.v2i1.14291
Zare' Chahooki, E., Sharifi, M., Shahvarooghi, F. and Namazifard, A. (2016). Estimating of energy using and economical index in wheat production inYazd Provience.2th National congress of Novel technologies and mechanization of agriculture. (in Persian).