تاثیر تابش مادون قرمز نزدیک با پیش‌تیمار فراصوت بر روی سینتیک خشک شدن گیاه غازیاغی

نویسندگان

گروه مهندسی مکانیک بیوسیستم دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

گیاهان با برگ سبز به دلیل رطوبت بالا، فصلی و فاسدشدنی هستند. حفظ و نگهداری صحیح می‌تواند از هدر رفت این محصولات جلوگیری کرده و در دسترس بودن آن‌ها را در خارج از فصل تولید افزایش دهد. با خشک‌کردن کنترل‌شده و مناسب می توان مواد مغذی و همچنین عطر و رنگ را در برگ های خشک‌شده حفظ نمود. هدف از این تحقیق بررسی اثر موج مادون‌قرمز نزدیک حین خشک کردن گیاه غازیاغی به همراه پیش تیمار فراصوت بر سینتیک خشک شدن، تغییرات رنگ، جذب مجدد رطوبت و خواص ترمودینامیکی می باشد. برگهای غازیاغی در یک خشک کن مادون‌قرمز در سه دمای ۴0، ۴۵ و ۵0 درجه سلسیوس و سه زمان پیش تیمار فراصوت صفر، ۵ و ۱۰ دقیقه تا رسیدن به محتوی رطوبتی ۱۰٪ بر پایه تر خشک شدند. نتایج نشان داد افزایش دما و مدت‌زمان پیش‌‌تیمار فراصوت موجب افزایش سرعت خشک شدن و نرخ خشک شدن می‌‌گردد. ضریب نفوذ مؤثر رطوبت برای غازیاغی در تمامی نمونه‌ها با پیش تیمار فراصوت و دما رابطه مستقیم داشته به‌‌طوری‌‌که با افزایش دما و پیش تیمار فراصوت میزان ضریب انتشار رطوبت افزایش یافت. انرژی فعال سازی در طی خشک کردن با افزایش مدت‌زمان پیش تیمار فراصوت، کاهش پیدا کرد. تغییرات رنگ و شاخص قهوه ای برگ های غازیاغی با افزایش دما و کاهش مدت پیش تیمار فراصوت افزایش یافت درحالی‌که مقدار کروما کاهش یافت. آنتالپی و آنتروپی با افزایش دمای خشک کردن و مدت‌زمان پیش تیمار فراصوت، کاهش یافتند، درحالی‌که انرژی آزاد گیبس افزایش پیدا کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of near-infrared radiation drying with ultrasound pretreatment on the drying kinetics of Falcaria

نویسندگان [English]

  • Abolfazl Akhoundzadeh Yamchi
  • ali hassanpour
  • Adel Hosainpour
  • Adel Rezvanivand Fanaie
  • Fatemeh Khayyatinejhad
department of mechanical engineering of biosystem , faculty of agriculture ,Urmia university, Urmia, Iran
چکیده [English]

Plants with green leaves are seasonal and perishable due to high humidity. Proper maintenance can prevent the wastage of these products and increase their availability outside the production season. With controlled and proper drying, nutrients as well as aroma and color can be preserved in the dried leaves. The purpose of this research is to investigate the effect of drying Falcaria with an infrared dryer with the help of ultrasound pre-treatment on drying kinetics, color changes, reabsorption of moisture, and thermodynamic properties. Falcaria leaves were dried in an infrared dryer at three temperatures of 40, 45, and 50 C and three ultrasonic pre-treatment times of zero, 5, and 10 minutes until reaching a moisture content of 10% wet based. The results showed that increasing the temperature and duration of ultrasound pre-treatment increases the drying rate. The effective moisture diffusion coefficient for Falcaria in all samples has a direct relationship with the ultrasonic pre-treatment and temperature. Hence, the effective moisture diffusivity increased with the increase in temperature and ultrasonic pre-treatment. The activation energy during drying is reduced with the increased duration of ultrasound pre-treatment. The changes in color and brown index of Falcaria leaves increased with increasing temperature and decreasing duration of ultrasound pre-treatment, while the amount of chroma decreased. Enthalpy and entropy decreased with increasing drying temperature and ultrasound pre-treatment time, while Gibbs free energy enhanced.

کلیدواژه‌ها [English]

  • Infrared dryer
  • Ultrasound waves
  • Thermodynamic properties
Akhoundzadeh Yamchi, A., Yeganeh, R., & Kouchakzadeh, A. (2019). The Effect Of Ultrasound Pretreatment On Qualitative Characteristics Of Peach Thin Slices (Alberta Varety). Journal of Researches in Mechanics of Agricultural Machinery, 8(14), 37–47. (In Persian).
Akhoundzadeh Yamchi, A., Yeganeh, R., & Kouchakzadeh, A. (2022). Effect of ultrasonic pretreatment on drying kinetics and physio-mechanical characteristics of peach slices. Journal of Food Process Engineering, 45(8), 1–12. https://doi.org/10.1111/jfpe.14053
Akhoundzadeh Yamchi, A., Hosainpour, A., Hassanpour, A., & Fanaei, A. R. (2024). Drying Kinetics and Thermodynamic Properties of Ultrasound Pretreatment Bitter Melon Dried by Infrared. Journal of Food Processing and Preservation, 2024(1), 1987547.
Alves, N. M. C., Arruda-Silva, T. A., Dos Santos, S. B., Galle, N. B. C., Silva, I. D. F., & da Silva, M. I. P. (2021). Drying kinetics and thermodynamic properties of ‘baru’ almond flours. Revista Brasileira de Engenharia Agricola e Ambiental, 25(1), 30–36. https://doi.org/10.1590/1807-1929/agriambi.v25n1p30-36
Amadeu, L. T. S., Queiroz, A. J. de M., Figueirêdo, R. M. F. de, Ferreira, J. P. de L., Silva, W. P. da, Gomes, J. P., Paiva, Y. F., Costa, C. C., Moura, H. V., Santos, D. da C., Lima, A. R. C. de, & Silva, H. A. (2022). Controlled Germination of Faba Beans: Drying, Thermodynamic Properties and Physical-Chemical Composition. Processes, 10(8). https://doi.org/10.3390/pr10081460
Ayala-Aponte, A. A., Cárdenas-Nieto, J. D., & Tirado, D. F. (2021). Aloe vera gel drying by refractance window®: Drying kinetics and high-quality retention. Foods, 10(7). https://doi.org/10.3390/foods10071445
Babiker, E. E., Juhaimi, F. A. L., Ghafoor, K., & Abdoun, K. A. (2018). Effect of drying methods on nutritional quality of young shoots and leaves of two Moringa species as non-conventional fodders. Agroforestry Systems, 92(3), 717–729. https://doi.org/10.1007/s10457-016-0043-8
Beigi, M. (2019). Drying of mint leaves: Influence of the process temperature on dehydration parameters, quality attributes, and energy consumption. Journal of Agricultural Science and Technology, 21(1), 77–88.
Cabral de Oliveira, D. E., Resende, O., Vieira Bessa, J. F., & Kester, A. N. (2013). Kinetic and thermodynamic properties of soybean grains during the drying process. Journal of Agricultural Engineering, 44(2s), 331–337. https://doi.org/10.4081/jae.2013.s2.e66
Chikpah, S. K., Korese, J. K., Sturm, B., & Hensel, O. (2022). Colour change kinetics of pumpkin (Cucurbita moschata) slices during convective air drying and bioactive compounds of the dried products. Journal of Agriculture and Food Research, 10(June), 100409. https://doi.org/10.1016/j.jafr.2022.100409
Connor, Z. N. O., Yagoobi, J. S., Tilley, B. S., Noori, Z., Yagoobi, J. S., & Experimental, B. S. T. (2022). Experimental study of paper drying with direct- contact ultrasound mechanism. Drying Technology, 0(0), 1–14. https://doi.org/10.1080/07373937.2022.2150635
Crank, J. (1979). The Mathematics of Diffusion. In Oxford university press. Oxford university press.
da Silva, D. P., Dos Santos, S. G. F., Silva, I. L., da Silva, H. W., & Rodovalho, R. S. (2020). Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia l.) leaves. Revista Brasileira de Engenharia Agricola e Ambiental, 24(10), 707–712. https://doi.org/10.1590/1807-1929/agriambi.v24n10p707-712
dos Santos, F. S., de Figueiredo, R. M. F., de Melo Queiroz, A. J., de Lima, A. R. C., & de Lima, T. L. B. (2021). The temperature effect in okra drying process: a kinetic study on powders physical properties. Australian Journal of Crop Science, 15(5), 649–660. https://doi.org/10.21475/ajcs.21.15.05.p2919
Doymaz, I. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8
Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8
EL-Mesery, H. S., Sarpong, F., Xu, W., & Elabd, M. A. (2022). Design of low-energy consumption hybrid dryer: A case study of garlic (Allium sativum) drying process. Case Studies in Thermal Engineering, 33(March), 101929. https://doi.org/10.1016/j.csite.2022.101929
Gharkhloo Rostami, Z., Sharifian, F., Rahimi, A., & Akhoundzadeh Yamchi, A. (2022). Influence of high wave sound pretreatment on drying quality parameters of echinacea root with infrared drying. Journal of the Science of Food and Agriculture, 102(5), 2153–2164.
Gutti, B., Kiman, S., & Murtala, A. M. (2012). Solar dryer-an effective tool for agricultural products preservation. Journal of Applied Technology in Environmental Sanitation, 2(1), 31–38.
Izli, N., & Polat, A. (2019). Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(5), 1317–1326. https://doi.org/10.1007/s00231-018-2516-y
Jiang, C., Wan, F., Zang, Z., Zhang, Q., Ma, G., & Huang, X. (2022). Effect of an Ultrasound Pre-Treatment on the Characteristics and Quality of Far-Infrared Vacuum Drying with Cistanche Slices. Foods, 11(6). https://doi.org/10.3390/foods11060866
Jiang, N., Ma, J., Ma, R., Zhang, Y., Chen, P., Ren, M., & Wang, C. (2023). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology (Brazil), 43, 1–8. https://doi.org/10.1590/fst.100422
Kalantari, D., Naji-Tabasi, S., Kaveh, M., Azadbakht, M., Majnooni, M., Khorshidi, Y., Asghari, A., & Khalife, E. (2023). Drying kinetics and shrinkage rate of thin-sliced pears in different drying stages. Journal of Food Process Engineering, 46(3), 1–11. https://doi.org/10.1111/jfpe.14264
Khallaf, A. E. M., & El-Sebaii, A. (2022). Review on drying of the medicinal plants (herbs) using solar energy applications. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 58(8), 1411–1428. https://doi.org/10.1007/s00231-022-03191-5
Latimer, G. W. (ed.), Official Methods of Analysis of AOAC INTERNATIONAL, 22nd Edition (New York, 2023; online edn, AOAC Publications, 4 Jan. 2023), https://doi.org/10.1093/9780197610145.001.0001.
Lin, Q., Zong, X., Lin, H., Huang, X., Wang, J., & Nie, S. (2023). Based on quality, energy consumption selecting optimal drying methods of mango slices and kinetics modelling. Food Chemistry: X, 17(October 2022), 100600. https://doi.org/10.1016/j.fochx.2023.100600
Macedo, L. L., Vimercati, W. C., da Silva Araújo, C., Saraiva, S. H., & Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43(9), 1–10. https://doi.org/10.1111/jfpe.13451
Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3). https://doi.org/10.1016/S1350-4177(96)00034-X
Mengeş, H. O., Ünver, A., Musa, M., & Can, Ö. (2019). The Effects of Drying Parameters on Drying Characteristics , Colorimetric Differences , Antioxidant Capacity and Total Phenols of Sliced Kiwifruit. https://doi.org/10.1007/s10341-019-00417-5
Okunola, A. A., Adekanye, T. A., Okonkwo, C. E., Kaveh, M., Szymanek, M., Idahosa, E. O., Olayanju, A. T., & Wojciechowska, K. (2023). Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam (Dioscorea alata) in a Hot Air Dryer. Energies, 16(4). https://doi.org/10.3390/en16041569
Öztekin, Y. B., Aktaş, M., Dolgun, E. C., Bilim, H. I. C., & Sacilik, K. (2022a). Drying kinetics and thermodynamic properties of Uzun pistachios dried by convective drying. Journal of Food Processing and Preservation, 46(11), 1–13. https://doi.org/10.1111/jfpp.17035
Öztekin, Y. B., Aktaş, M., Dolgun, E. C., Bilim, H. I. C., & Sacilik, K. (2022b). Drying kinetics and thermodynamic properties of Uzun pistachios dried by convective drying. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.17035
Qing, S., Long, Y., Wu, Y., Shu, S., Zhang, F., Zhang, Y., & Yue, J. (2023). Hot-air-assisted radio frequency blanching of broccoli: heating uniformity, physicochemical parameters, bioactive compounds, and microstructure. In Journal of the Science of Food and Agriculture (Vol. 103, Issue 5). https://doi.org/10.1002/jsfa.12458
Rafiey, Z., Jalili, F., Sohrabi, M., Salahshoor, M., & Jalili, C. (2017). Effects of Hydro- alcoholic Extract of Falcaria Vulgaris on Pancreas Tissue in Streptozotocin-induced Diabetic Rats. Ranian Journal of Endocrinology and Metabolism Vol, 19(2), 91–99. (In Persian).
Sadin, R., Chegini, G. R., & Sadin, H. (2014). The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 50(4), 501–507. https://doi.org/10.1007/s00231-013-1255-3
Sarpong, F., Dwumfour, F., Rashid, M. T., & Aly, T. (2022). Modelling the Kinetics, Thermodynamic and Physical Properties of Coconut (Cocos nucifera L.) during Convective Drying. Ghana Journal of Science, 63(1), 63–73. https://doi.org/10.4314/gjs.v63i1.4
Shackebaei, D., & Godini, A. . (2009). Assessment of the role of nitric oxide component of Falcaria vulgaris extract in coronary vasodilatation in the isolated rat heart. Scientific Journal of Kurdistan University of Medical Sciences, 14(1), 75–83. (In Persian).
Sharifian, F., Gharkhloo, Z. R., Yamchi, A. A., & Kaveh, M. (2023). Infrared and hot drying of saffron petal (Crocus sativus L.): Effect on drying, energy, color, and rehydration. Journal of Food Process Engineering, April. https://doi.org/10.1111/jfpe.14342
Simal, S., Benedito, J., Sánchez, E. S., & Rosselló, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36(3), 323–336. https://doi.org/10.1016/S0260-8774(98)00053-3
Tagnamas, Z., Bahammou, Y., Kouhila, M., Hilali, S., Idlimam, A., & Lamharrar, A. (2020). Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method. Renewable Energy, 146, 16–24. https://doi.org/10.1016/j.renene.2019.06.107
Tayyab Rashid, M., Ahmed Jatoi, M., Safdar, B., Wali, A., Muhammad Aadil, R., Sarpong, F., & Ma, H. (2020). Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups. Ultrasonics Sonochemistry, 68(March), 105226. https://doi.org/10.1016/j.ultsonch.2020.105226
Tayyab Rashid, M., Liu, K., Ahmed Jatoi, M., Safdar, B., Lv, D., & Wei, D. (2022). Developing ultrasound-assisted hot-air and infrared drying technology for sweet potatoes. Ultrasonics Sonochemistry, 86(March), 106047. https://doi.org/10.1016/j.ultsonch.2022.106047
Wanderley, R. de O. S., de Figueirêdo, R. M. F., Queiroz, A. J. de M., dos Santos, F. S., Paiva, Y. F., Ferreira, J. P. de L., de Lima, A. G. B., Gomes, J. P., Costa, C. C., da Silva, W. P., Santos, D. da C., & Maracajá, P. B. (2023). The Temperature Influence on Drying Kinetics and Physico-Chemical Properties of Pomegranate Peels and Seeds. Foods, 12(2), 1–18. https://doi.org/10.3390/foods12020286
Wang, C., Tian, S., & An, X. (2022). The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant components of sliced chinese jujube. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 58(9), 1561–1571. https://doi.org/10.1007/s00231-022-03202-5
Wu, B., Ma, H., Qu, W., Wang, B., Zhang, X., Wang, P., Wang, J., Atungulu, G. G., & Pan, Z. (2014). Catalytic infrared and hot air dehydration of carrot slices. Journal of Food Process Engineering, 37(2), 111–121. https://doi.org/10.1111/jfpe.12066
Yadegari, M., Khazae, M., Ghorbani, R., Rezae, M., Izadi, B., & Sheikholeslam, A. (2007). Wound Healing Effect of Falcaria Vulgaris’ Leaves on Aspirin Induced Gastric Ulcer in Rats. Journal of Kermanshah University of Medical Sciences, 10(3), 195–203.
Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S., & De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). Lwt, 64(1), 177–188. https://doi.org/10.1016/j.lwt.2015.05.045
Zang, Z., Zhang, Q., Huang, X., Jiang, C., He, C., & Wan, F. (2023). Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03076-3
Zzaman, W., Biswas, R., & Hossain, M. A. (2021). Application of immersion pre-treatments and drying temperatures to improve the comprehensive quality of pineapple (Ananas comosus) slices. Heliyon, 7(1), e05882. https://doi.org/10.1016/j.heliyon.2020.e05882