ارزیابی اثرات زیست‌محیطی تولید چغندرقند با روش چرخه زندگی در استان همدان

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکد کشاورزی، دانشگاه زنجان

2 گروه مهندسی ماشین های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران (کرج)

3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

در این مطالعه، تخمین‌هایی از انتشارات حاصل از تولید چغندرقند از مصرف نهاده‌ها در مزرعه تا تولید محصول چغندرقند ارایه شده است. روش مورد استفاده ارزیابی چرخه زندگی می‌باشد. شاخص‌هایی که مورد بررسی قرار گرفته‌اند شامل پتانسیل گرمایش زمین، پتانسیل اسیدی شدن، اختناق دریاچه‌ای، تخلیه منابع غیر زیستی، تخلیه سوخت‌های فسیلی، تخلیه اوزون، مسمومیت انسان، مسمومیت آب‌های سطحی، مسمومیت آب‌های آزاد، مسومیت خاک و اکسیداسیون فتوشیمیایی است. تجزیه و تحلیل‌ها براساس داده‌های جمع‌آوری شده از 88 مزرعه چغندرقند در استان همدان به‌دست آمده است. نتایج این تجزیه و تحلیل برای واحد عملکردی یک تن درهکتارچغندرقند بدون تخصیص ارائه شده است. برای گروه‌های تاثیر تخلیه منابع غیر زیستی، تخلیه سوخت‌های فسیلی، گرمایش زمین، تخلیه ازون، مسمومیت انسان، مسمومیت آب‌های سطحی، مسمومیت آب‌های آزاد، مسمومیت خاک، اکسیداسیون فتوشیمیایی، اسیدی شدن و اختناق دریاچه‌ای به ترتیب مقادیر kg Sb eq 10-4×78/3، MJ 10+3×57/3، kgCO2 eq 0/310، kgCFC-11 eq 10-6×25/8، kg 1,4-DB eq 70/37، 40/47، 10+4×45/5، 72/1، kg C2H4 eq 10-2×37/5، kg SO2 eq 16/3، kg PO4 eq 73/1 برای هر تن چغندرقند به‌دست آمد. نتایج نشان داد که تقریبا تمام گروه‌های تاثیر تحت سلطه الکتریسیته و کودهای شیمیایی بودند. جایگزینی برق تجدیدپذیر با برق شبکه، به‌عنوان منبع اصلی انرژی در عملیات آبیاری، می‌تواند به‌عنوان یک راه‌کار مناسب مورد بررسی و مقایسه قرار گیرد. با توجه به محدودیت منابع آبی در ایران، تغییر و اصلاح الگوی کشت در مقیاس‌های خرد و کلان می‌تواند به‌طور قابل توجهی بر محیط زیست تأثیر بگذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Environmental Burdens of Sugar Beet Production with the Life Cycle Method in Hamadan Province

نویسندگان [English]

  • Majid Namdari 1
  • Shahin Rafiee 2
  • Soleiman Hosseinpour 3
1 Department of Plant Production and Genetic, Faculty of Agriculture, University of Zanjan
2 Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
3 Department of Biosystems Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
چکیده [English]

This work presents estimates of the emissions resulting from the production of sugar beet from Consumption of inputs in cultivation to the final product at the farm gate. Life cycle assessment method was used. The study covers the impact of abiotic and fossil depletion potential, acidification potential, eutrophication potential, global warming potential for time horizon 100 years, ozone depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential, terrestrial ecotoxicity potential, and photochemical oxidation potential. The results of this analysis are presented for the functional unit of 1 tonne sugar beet without allocation. Abiotic depletion, abiotic depletion (fossil fuel), acidification, eutrophication, global warming, ozone depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation were calculated as 3.78×10-4 kg Sb eq, 3.57×10+3 MJ, 310 kgCO2 eq, 8.25 ×10-6 kgCFC-11 eq, 37.70 kg 1,4-DB eq, 47.40 kg 1,4-DB eq, 5.45×10+4 kg 1,4-DB eq, 1.72 kg 1,4-DB eq, 5.37×10-2 kg C2H4 eq, 3.16 kg SO2 eq, 1.73 kg PO4 eq, respectively. Almost all impact categories were dominated by electricity and chemical fertilizers. Replacing grid electricity as the main source of irrigation energy source with renewable electrical energies reduced the environmental burdens for sugar beet production. Due to the limited water resources in Iran, changing and improving the cultivation pattern on micro and macro scales can significantly affect the environment.

کلیدواژه‌ها [English]

  • Environmental Index
  • Global Warming
  • Hamadan
  • Resource Consumption
AACC. (2000). Approved Methods of the American Association of Cereal Chemists, 10th Ed., Vol. 2. American Association of Cereal Chemists, St. Paul, MN.
Anonymous (2022). Quality guidelines for buying domestic wheat (characteristics, permissible limits and method of reduction). Iran State Trading Company, Cereal Research Center. Report on the level production and yield of crops in the crop year 2020-2021. Information and Communication Center, Ministry of Agriculture. Ministry of Agricultural Jihad. pp, 91. (In Persian)
Anonymous. (2020). Official Grain Grading Guide. Canadian Grain Commission, https://grainscanada.gc.ca/en/grain-quality/official-grain-grading-guide/04-wheat/04-wheat-e.pdf
Anonymous.(2019). Standard for wheat and durum wheat. CXS 199-1995. CODEX‏‏ ‏ALIMENTARIUS , International food standards. http://www.fao.org/fao-who-codexalimentarius
Anonymous. (2012). National standard No. 3003. Cereals and its products, the method of determining wheat loss and its components. National Standard Organization of Iran. (In Persian)
Anonymous. (2012a). National standard No. 104. Cereals and its products, characteristics and test methods. National Standard Organization of Iran. (In Persian)
Anonymous. (2007). National standard No. 13535. Cereals and its products by sampling method. National Standard Organization of Iran. (In Persian)
Anonymous. (1998). Determination of Besatz of wheat, International Association for Cereal Chemistry (ICC), ICC Standard No. 102/1, 19. Revised 1972, ICC 2012.
Carter, B.P., Morris, C.F., and J.A. Anderson (1999). Optimizing the SDS Sedimentation Test for End-Use Quality Selection in a Soft White and Club Wheat Breeding Program. Cereal Chemistry. 76(6): 907–911.
Gazor, H.R. (2021). Evaluation of different types of sieves’ effect on the losses of wheat delivered consignment to wheat sale centers. Final research report. Agricultural Engineering Research Institute. Agricultural Research, Education and Extension Organization. Ministry of Jahad-e-Agriculture, pp 113. (In Persian)
FAO. (2023). FAO Cereal Supply and Demand Brief. http://www.fao.org/worldfood situation.
Gazor, H.R., Hamidi, A. and R.Adelzadeh (2017). Investigating physical losses in maize seed processing machines in Moghan. Iranian Journal of Seed Science and Technology, 6(1): 131–149.
Farajzadeh, Z. and A.Shahvali (2010). Hamedan province agriculture image. Ministry of Jihad Agriculture, Planning and Economic Deputy, Information Statistics office. (In Persian)
ICC Standard. (1995). Determination of protein by Near Infrared Reflectance (NIR) spectroscopy. No. 159.
Mirzazadeh, A., Abdollahpour, S. and M. Moghaddam (2014). Affecting variable order in upper sieve return loss. Journal of Agricultural Mechanization, 2(2): 45–54. (In Persian)
Moghadam, S. (2006). Investigation of wheat harvest loss in East Azarbaijan province. Master's thesis in Mechanization Engineering, Department of Agricultural Machinery Engineering, Shahid Chamran University of Ahvaz, Faculty of Agriculture, Ahvaz. Iran. (In Persian)
Sheikh Sajjadieh, M. (2010). Comparative study on the quality of Iranian wheat, flour and bread with three selected countries. Iran's state-owned commercial specialized parent company. Cereal Research Center. (In Persian)