انتخاب سرعت‌پیشروی و عمق شخم مناسب بر اساس شاخص‌های مصرف انرژی ادوات خاک‌ورز اولیه با روش تاپسیس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

خاک­ ورزی از جمله عملیات مهم در کشاورزی است که تعیین شرایط کاری مناسب برای انجام این عملیات امری ضروری است. طبق نتایج تحقیق محققان، خاک­ورزی همواره با مصرف زیاد انرژی همراه است بهمین دلیل انتخاب سرعت ­پیشروی و عمق ­شخم مناسب ادوات خاک­ ورزی به لحاظ مصرف انرژی بهینه ضرورت پیدا می­ کند. در این تحقیق با استفاده از روش مدیریتی تاپسیس (TOPSIS) سرعت­ پیشروی و عمق­ شخم مناسب با توجه به پارامترهای مصرف انرژی مورد بررسی قرار گرفته است. این پژوهش در قالب طرح اسپلیت پلات فاکتوریل بر پایه بلوک کامل تصافی در سه تکرار انجام شد. تیمارهای مورد بررسی شامل سه نوع دستگاه خاک­ ورز اولیه (گاوآهن برگردان دار، گاوآهن بشقابی و گاوآهن چیزل) در 3 سرعت پیشروی مختلف (3، 5/4، 6 کیلومتر بر ساعت) و عمق های مختلف (15، 20 و 25 سانتی­متر) انتخاب شد. آزمایشات در خاک رسی لومی و میزان رطوبت 7 درصد انجام شد. پارامترهای مصرف انرژی شامل توان مالبندی (kW)، مصرف سوخت (l.ha-1)، بازده کششی (%) و بازده بهره وری انرژی (OEE) (%)، ظرفیت مکانیزاسیون (kWh.ha-1) و کشش ویژه (kN.m-1) اندازه­ گیری شد. نتایج نشان داد که گاوآهن برگردان­ دار و گاوآهن بشقابی در سرعت 5/4 کیلومتر بر ساعت و عمق 25 سانتی­متر و گاوآهن چیزل در سرعت 6 کیلومتر بر ساعت و عمق 15 سانتی­ متر از لحاظ مصرف انرژی در شرایط مناسبی قرار داشتند. از نظر پارامتر مصرف انرژی، در بیشتر سرعت­ ها و عمق­ های مختلف کاری، گاوآهن چیزل بدلیل بالا بود ضریب ترکیبی در روش تحلیل تاپسیس دارای مزیت نسبی نسبت به گاوآهن بشقابی و گاوآهن برگردان­ دار بود.

کلیدواژه‌ها


عنوان مقاله [English]

Selection of Appropriate Forward Speed and Tillage Depth Based on the Energy Consumption Factors of Primary Tillage Tools using TOPSIS Method

نویسندگان [English]

  • Korosh Andekaeizadeh
  • Mohamad Esmail Khorasani Ferdavani
  • Mohammad Javad Sheykhdavoodi
Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Abstract
Tillage is one of the most important field operations in agriculture. For this operation, it is essential to determine suitable working conditions. According to the results of researches on tillage, this operation is always associated with high energy consumption. For this reason, it is necessary to choose the appropriate forward speed and plowing depth of tillage tools in terms of optimal energy consumption. In this research, by using the management method TOPSIS, the appropriate speed-advancement and plowing depth have been investigated according to the parameters of energy consumption. In this research, three types of primary tillage machines (Moldboard plow, disc plow and chisel plow) at 3 different forward speeds (3, 4.5, 6 km/h) and different depths (15, 20 and 25 cm) was selected and performed in loamy clay soil with a moisture content of 7%. The parameters of energy consumption include drawbar power (kW), fuel consumption (l.ha-1), traction efficiency (%) and energy efficiency (OEE) (%), mechanization capacity (kW.h.ha-1) and specific traction (kN.m-1) was measured. The results showed that for the moldboard plow and disc plow 4.5 km/h forward speed and 25 cm depth and for the chisel plow, 6 km/h forward speed and 15 cm depth were the best conditions in terms of energy consumption. In most of different working speeds and depths, chisel plow was advantageous in terms of energy consumption, compared to disc plow and Moldboard plow, according to TOPSIS analyses.

کلیدواژه‌ها [English]

  • Tillage implements
  • Energy
  • System
  • TOPS
Almasi, M., Kiyani, S. H., and Loveymi, N. (2006). Basics of Agricultural Mechanization. Ghom Iran. 248 p (In Persian).
Andekaeizadeh, K., Sheykhdavoodi, M. J., and Khorasani Fardavani, M. E. (2015). The selection of best tillage implements in terms of energy use efficiency using simple additive weighting methodology. Journal of Agricultural Machinery. 37–47. (In Persian)
Bogel, T., Osinenko, P., and Herlitzius, Th. (2016). Assessment of soil roughness after tillage using spectral analysis. Soil Tillage Res. 159: 73–82.
de lima silva, D., Ferriera, L., and de Almeida Filho, A. T. (2022). Preference disaggregation on TOPSIS for sorting applied to an economic freedom assessment. Expert Systems with Applications. 215(1); 119–130.
Kheiralla, A. F., Yahya, A., Zohadie, M., and Ishak, W. (2004). Modeling of power and energy requirements for tillage implements operating in serdang sandy clay loam, Malaysia. Soil & tillage research. 78: 21–34.
Kim, Y. S., Lee S. D., Baek, S. M., Baek, S.Y., Jeon, H. H., Lee, J. H., Kim, W. S., Shim, J. Y., and Kim, Y. J. (2022). Analysis of the Effect of Tillage Depth on the Working Performance of Tractor-Moldboard Plow System under Various Field Environments. Sensors, 22(7): 2750. https://doi.org/10.3390/s22072750.
Namdari, M., Rafiei, Sh., and Jafari. A. (2011). Failure Mode and Effects Analysis using for optimal plowing with moldboard. Journal of Agricultural Machinery Engineering. 1(1): 17–24. (In Persian).
Sarkar, P., Upadhyay, G., and Raheman. H. (2022). Active-passive and passive-passive configurations of combined tillage implements for improved tillage and tractive performance: A review. Spanish Journal of Agricultural Research, 19(4): e02R01.
Shakouri, H., Nabaee, M., and Aliakbarisani, S. (2014). A quantitative discussion on the assessment of power supply technologies: DEA (data envelopment analysis) and SAW (simple additive weighting) as complementary methods for the “Grammar”. Energy. 640–647.
Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Research. 118: 66–87.
Usaborisut, P., and Prasertkan, K. (2019). Specific energy requirements and soil pulverization of a combined tillage implement. Heliyon. 1–10.
Wang, Y. J. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing. 30: 412–420.
Yang, B., Zhao, J., and Zhao, H. (2022). A robust method for avoiding rank reversal in the TOPSIS. Computers & Industrial Engineering. 174(1): 108–120.