Design, Construction and Evaluation of Air Assisted Nozzle on Boom Sprayer

Document Type : Research Paper

Authors

1 Department of Agricultural Machinery and Mechanization, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran.

2 Department of Agricultural Machinery and Mechanization, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran

3 Graduated, Department of Agricultural Machinery and Mechanization, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

Abstract

Abstract
Spraying is a major operation to control the bio elements that are harmful for farming products. Considering the high costs of chemical spraying and related environmental issues, the proper management is important. In the meantime, reduction in nozzle drift can be considered as one of the main factors in preventing the risk of pesticide environmental pollution, as well as reducing pesticide waste and proper spray uniformity. For this purpose, design, fabrication and evaluation of air assisted nozzle on boom sprayer was conducted using a factorial completely randomized design with three replications. The experiments were performed using three types of air assisted nozzles: air- liquid-air (ALA), liquid (L), liquid-air- liquid (LAL) at four levels of air assisted speed (0, 2, 4 and 7.5 m/s), and also four levels of wind speed (0, 2, 3 and 4 m/s). In the research, the drift, sediment, uniform spraying, volume median diameter of 50 and 90%, numerical median diameter and spraying quality indicators were evaluated. A spectrophotometry device for measurements and MATLAB and SAS 9.1 statistical software were used for analysis. Results showed that the effects of air assisted nozzle and wind speed on the drift, sediment, uniform spraying, volume median diameter of 50 and 90% and spraying quality indicator were significant (). Also results indicated that the third type of nozzle (LAL) at 4 m/s assistant air speed and 4 m/s wind speed had the highest sediment (144.87 l/ha) and the lowest drift (0.06%), while the lowest sediment (31.16 l/ha) and the highest drift (0.69%) were found for the third nozzle (LAL) without assistant air (as control group) and in 2 m/s wind speed. The minimum coefficient of variation (0.42 the most uniformity in spraying) was related to the third nozzle with 4 m/s assistant air speed and 4 m/s wind speed, but the maximum coefficient of variation (4.08) belonged to the first nozzle with 7.5 m/s assistant air speed  but without any blowing wind.
 

Keywords


پیمان، ل.، عبداله­پور، ش.، رعنابناب، ب. و محمودی، الف. 1390. بررسی عوامل موثر در یک نواختی اندازه قطرات سم با استفاده از معیار cv. اولین کنگره ملی علوم و فن­آوری­های نوین کشاورزی دانشگاه زنجان (محور گیاه پزشکی). ص4.
سریواستاوا، الف.، گورینگ، ک. و رورباک، ر. 1386. ترجمه منصور بهروزی­لار و حسین مبلی، اصول طراحی ماشین­های کشاورزی. انتشارات دانشگاه آزاد اسلامی تهران. چاپ دوم. ص 702.
فتاحی، ح.، عبدالله­پور، ش.، اسماعیل­زاده، الف و مقدم­واحد م. 1393. ارائه و ارزیابی یک مدل تجربی برای بادبردگی افشانک­های بادبزنی در تونل باد به کمک پردازش تصویر. نشریه ماشین­های کشاورزی. (2) 4. ص 274-266
Al Heidary, M., Douzals, J.P., Sinfort, C. and Vallet, A. 2014. Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel. International Conference of Agricultural Engineering Journal. Pp: 1-7.
Arvidsson, T., Bergström, L. and Kreuger, J. 2011. Spray drift as influenced by meteoro-logical and technical factors. Pest Manag   Journal. Sci. 67. Pp: 586–598.
Balsari, P., Gil, E., Marucco, P., Gallart, M., Bozzer, C., Liop, C. and Tamagnone, M. 2014. Study and development of a test methodology to assess potential drift generated by air-assisted sprayers. Di SAFA Crop protection Journal Aspects of Applied Biology. 122. Pp: 339-346.
Bayat, A. and Bozdogan, N. Y. 2005. An air-assisted spinning disc nozzle and its performance on spray deposition and reduction of drift potential. Crop Protection Journal. 24. Pp: 651-960.
Deveau, J. 2009. Six elements of effective spaying in orchards and vineyards. Ministry of agriculture. Food and rural affairs Journal. 605 (09-039). Pp: 1-9.
Fabio S., Carlos, G. R. 2006. Spray deposition and losses in potato ASA function of air assistance and sprayer boom. Since. Agricultural Journal. Vol: 63(6): 515- 521.
Gil, E., Balsari, P., Gallart, M., Llorens, J., Marucco, P., Andersen, P.G., Fàbregas, X. and Llop, J. 2014. Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Protection Journal. 56. Pp: 58–68.
Gil, E., Gallart, M., Balsari, P., Marucco, P., Almajano, M. P.and Liop, J. 2015. Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agricultural and Forest Meteorology Journal. 202. Pp: 94–101.
Gil, E., Gallart, M., Llorens, J. and Llop, J. 2012. Determination of drift potential value (DPV) for different flat fan nozzles using a horizontal drift test bench. International Conference of Agricultural Engineering Journal. 8. Pp: 6.
Gil, E., Llorens, J., Liop, J., Fabregas, X. and Gallart, M. 2013. Use of a terrestrial lidar sensor for drift detection in vineyard spraying. Sensors Journal. 13. Pp: 516-534.
Hilz, E. and Vermeer, A.W.P. 2013. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Protection Journal. 44. Pp: 75-83.
Kennedy, M. C., Butler Ellis, M.C. and Miller, P.C.H. 2012. BREAM: A probabilistic bystander and resident exposure assessment model of spray drift from an agricultural boom sprayer. Computers and Electronics in Agriculture Journal. 88. Pp: 63-71.
Kufferath, A., Wende, B. and Leuckel, W. 1999. Influence of liquid flow conditions on spray characteristics of internal-mixing twin fluid atomisers. Heat Fluid Flow Journal.  Pp: 513-519.
Nuyttens, D., De Schampheleire, M., Baetens, K. and Sonck, B. 2007a. The influence of operator-controlled variables on spray drift from field crop sprayers. American Society of Agricultural and Biological Engineers Journal. 50. Pp: 1129-1140.
Nuyttens, D., Baetens, K., De Schampheleire, M., Sonck, B. 2007b. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering Journal. 97, 333-345.
Safari, M., Shamabadi, Z. and Sheikh, A. 2013. Comparison of tractor air assisted boom sprayer with conventional sprayers to control sun pests in wheat production. IJACS Journal. 5. Pp: 433-444.
Sayinci, B. and Bastaban, S. 2011. Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research. 6. Pp: 352 -362.
Singh, G., Kumar, S. S., Dixit, A., Manes, G. S. and Singh, A. 2011. Spray distribution pattern of different sprayers on cotton using droplet analyzer. Journal of research, skuast-j 10.Pp:33-40
Spanoghe, P., Van Eeckout, H., Der Meeren, P. and Steurbaut, W. 2004. Effect of adjuvants on atomization of pesticides. Atomization and Sprays Journal. 14. Pp: 511-524.
Tsay, J.R. and Liang, L.S. 2004. Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation. American Society of Agricultural and Biological Engineers Journal. 47. Pp: 1887-1897.
Van de Zande, J., Michielsen, J.M.G.P., Stallinga, H., 2007. Spray Drift and Off-fieldEvaluation of Agrochemical in the Netherlands. Plant Research International B.V., Wageningen. Report 2007-149.
Zhao, H., Xie, C.H., Maoliu, F., Xiongkui, H.E., Zhang, J. and Song, J. 2014. Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Prodoction Journal. 60. Pp: 78-82.