Modeling of Energy Consumption and Environmental Indices of Production and Processing of Tea with Regression and Artificial Neural Network Models

Document Type : Research Paper

Authors

1 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran

2 Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz

Abstract

Abstract
In this research, modeling of energy consumption and environmental emissions for different process of tea production in Gilan province (Iran) were investigated using regression and artificial neural networks. Data related to agricultural and industrial activities of tea production chain were collected through questionnaire survey from tea farms of different counties in Guilan province. Also, the datatbank of agricultural organization, tea research institute and tea factories were collected. The results showed that the total energy input and output for green tea leaf production were 34343.51 and 10996.45 MJ/ha, respectively. Also, the total energy input for dry tea was obtained 64885.23 MJ/ton. The results of the life cycle assessment in tea farms revealed that the highest effect belonged to nitrogen in abiotic depletion, dcidification, eutrophication and global warming potential impacts. The survey of life cycle assessment in the tea processing factories illustrated that diesel fuel had the highest share in abiotic depletion, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity and photochemical oxidation impact categories. In acidification, eutrophication, global warming potential impacts, green leaf input had the highest share. Moreover, the highest share of marine aquatic ecotoxicity and terrestrial ecotoxicity was belonged to coated paper. The results of energy and environmental emissions modeling for green tea leaf production showed that artificial neural networks can predict the outputs and inputs with more accuracy than regression technique.
 

Keywords


سفیدپری پ. 1391. مدیریت و بهینه­سازی مصرف انرژی در واحدهای پرورش گاو شیری و مرغ تخم‌گذار به کمک روش­های بهینه­سازی فازی، مطالعه موردی: شهرستان­های ری و کرج. پایان­نامه کارشناسی ارشد،دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران
نبوی پله سرائی الف.، عبدی ر.، صالحی م. و قاسمی مبتکر، ح..1392. مدل‌سازی و تحلیل حساسیت نهاده‌های انرژی برای تولید سیر در استان گیلان. مجله پژوهش‌های مکانیک ماشین‌های کشاورزی. 2(2): 53-60.
نیکخواه الف.، عمادی ب.، شعبانیان ف. و کلکناری هانی ح.. 1393.ارزیابی حساسیت انرژی و انتشار گازهای گلخانه ای تولید چای در استان گیلان. نشریه بوم‌شناسی کشاورزی. 6(3):622-633.
یوسفی نژاد استادکلایه، م. 1394. ارزیابی انرژی مصرفی و انتشار آلاینده‌های کارخانه‌های اصلی تولید سیگار در ایران. پایان­نامه کارشناسی ارشد، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران.
Ajayi O. O. R., Fagbenl O., Katende  J., Okeniyi J. O. and Omotosho O. A. 2010. Wind Energy Potential for Power Generation of a Local Site in Gusau, Nigeria. International Journal of Energy for a Clean Environment 11(1–4): 99–116.
Brentrup F., Küsters J., Kuhlmann H. and Lammel J. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247–264.
Da Silva V., Van der P., Werf H. M., Soares S. R. and Corson M. S. 2014. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management 133: 222–231.
Ghasemi Mobtaker H., Keyhani A., Mohammadi A., Rafiee S. and Akram A. 2010. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems &Environment 137: 367–372.
Jolliet O., Saadé-Sbeih M., Shaked S., Jolliet A. and Crettaz P. 2016. Environmental Life Cycle Assessment. CRC Press, Taylor & Francis Group, Boca Raton.
Khanali M., Mobli H. and Hosseinzadeh-Bandbafha H. 2017. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environmental Science and Pollution Research 24(34): 26324–26340.
Kitani O. 1999. CIGR handbook of agricultural engineering. ASAE publication.
Kizilaslan H. 2009. Input–output energy analysis of cherries production in Tokat province of Turkey. Applied Energy 86: 1354–1358.
Mohammadi A. and Omid M. 2010. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy 87: 191–196.
Mohammadi A., Tabatabaeefar A., Shahin S., Rafiee S. and Keyhani A. 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management 49: 3566–3570.
Munasinghe M., Deraniyagala Y., Dassanayake N. and Karunarathna H. 2017. Economic, social and environmental impacts andoverall sustainability of the tea sector in Sri Lanka. Sustainable Production and Consumption 12: 155–169.
Nabavi-Pelesaraei A., Abdi R., Rafiee S., Shamshirband S. and Yousfinejad-Ostadkelayeh M. 2016a. Resource management in cropping systems using artificial intelligence techniques – a case study of orange orchards in north of Iran. Stochastic Environmental Research and Risk Assessment  30(1):413–427.
Nabavi-Pelesaraei A., Rafiee S., Hosseinzadeh-Bandbafha H. and Shamshirband S. 2016b. Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production 133: 924–931.
Ozkan B., Akcaoz H. and Fert C. 2004. Energy input–output analysis in Turkish agriculture. Renewable Energy 29: 39–51.
Pelvan E. and Özilgen M. 2017. Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes. Sustainable Production and Consumption 12: 59–77.
Sethi V. P., Sumathy K., Lee C. and Pal D. S. 2013. Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies. Solar Energy 96: 56–82.
Soheili-Fard F. and Salvatian S. B. 2015. Forecasting of tea yield based on energy inputs using artificial neural networks (A case study: Guilan province of Iran). Biological Forum 7(1): 1432–1438.
Tabatabaeefar A., Emamzadeh H., Varnamkhasti M. G., Rahimizadeh R. and Karimi M. 2009. Comparison of energy of tillage systems in wheat production. Energy 34: 41–45.
Taki, M., Mahmoudi A., Ghasemi Mobtaker H. and Rahbari H. 2012. Energy consumption and modeling of output energy with multilayer feed–forward neural network for corn silage in Iran. Agricultural Engineering International: CIGR Journal 14(4): 93–101.