Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2017).
Influence of zero-valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure.
Energy,
120, 842-853.
https://doi.org/10.1016/j.energy.2016.11.137
Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2016).
Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry.
Renewable Energy,
87, 592-598.
https://doi.org/10.1016/j.renene.2015.10.053
Aguilar-Moreno, G. S., Navarro-Cerón, E., Velázquez-Hernández, A., Hernández-Eugenio, G., Aguilar-Méndez, M. Á., & Espinosa-Solares, T. (2020).
Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles.
Renewable Energy,
147, 204-213.
https://doi.org/10.1016/j.renene.2019.08.111
Ahmadi Pirlou, M, & Mesri Gundoshmian, T. (2021).
Evaluating the Effect of Alkaline Pretreatment on Improvement of Biomethane Production from Anaerobic Digestion of Mixed Municipal Waste and Sewage Sludge. Research in Environmental Health, 7(1), 53-66. (in Persian with English abstract).
https://doi.org/10.22038/jreh.2021.56792.1416
Ahmadi Pirlou, M, Mesri Gundoshmian, T, & Rasekh. M. (2023).
Effects of different concentrations of zero-valent iron nanoparticles on biogas production from co-digestion of municipal solid waste and sewage sludge. Environmental Science Studies, 8(1), 5910-5921. (in Persian with English abstract).
https://doi.org/10.22034/jess.2022.313870.1678
Ahamed, A., Chen, C. L., Rajagopal, R., Wu, D., Mao, Y., Ho, I. J. R., ... & Wang, J. Y. (2015). Multi-phased anaerobic baffled reactor treating food waste. Bioresource Technology, 182, 239-244.
Ali, A., Mahar, R. B., Soomro, R. A., & Sherazi, S. T. H. (2017).
Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
39(16), 1815-1822.
https://doi.org/10.1080/15567036.2017.1384866
Alkhrissat, T., Kassab, G., & Abdel-Jaber, M. T. (2023).
Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge. Energies, 16(15), 5844.
https://doi.org/10.3390/en16155844
American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018).
Biogas upgrading and utilization: Current status and perspectives.
Biotechnology advances,
36(2), 452-466.
https://doi.org/10.1016/j.biotechadv.2018.01.011
Benali, M. (2019).
Experimental investigation of biogas production from cow dung in an anaerobic batch digester at mesophilic conditions.
Iranica Journal of Energy & Environment,
10(2), 121-125.
https://doi.org/10.5829/ijee.2019.10.02.09
Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., ... & Puntes, V. (2014).
Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production.
Small,
10(14), 2801-2808.
https://doi.org/10.1002/smll.201303703
Chinwetkitvanich, S., & Ruchiraset, A. (2017).
The anaerobic baffled reactor (ABR): Performance and microbial population at various COD loading rates.
GEOMATE Journal,
12(33), 78-84.
https://doi.org/10.21660/2017.33.2588
Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., & Aulenta, F. (2014).
Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.
Environmental science & technology,
48(13), 7536-7543.
https://doi.org/10.1021/es5016789
Dölle, K., Hughes, T., & Kurzmann, D. E. (2020).
From fossil fuels to renewable biogas production from biomass based feedstock—a review of anaerobic digester systems.
Journal of Energy Research and Reviews,
5(3), 1-37.
https://doi.org/10.9734/jenrr/2020/v5i330147
Fu, L., Zhou, T., Wang, J., You, L., Lu, Y., Yu, L., & Zhou, S. (2019).
NanoFe3O4 as solid electron shuttles to accelerate acetotrophic methanogenesis by Methanosarcina barkeri.
Frontiers in Microbiology,
10, 388.
https://doi.org/10.3389/fmicb.2019.00388
Gong, L., Yang, X., You, X., Wang, J., Zhou, J., Zhou, Y., & Yang, J. (2021).
Explore the effect of Fe3O4 nanoparticles (NPs) on anaerobic digestion of sludge.
Environmental Technology,
42(10), 1542-1551.
https://doi.org/10.1080/09593330.2019.1673829
Hassanpourmoghadam, L., Goharrizi, B. A., Torabian, A., Bouteh, E., & Rittmann, B. E. (2023).
Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge. Biomass and Bioenergy,
169, 106692.
https://doi.org/10.1016/j.biombioe.2022.106692
Hsieh, P. H., Lai, Y. C., Chen, K. Y., & Hung, C. H. (2016).
Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. International Journal of Hydrogen Energy,
41(46), 21685-21691.
https://doi.org/10.1016/j.ijhydene.2016.06.197
Łebkowska, M., Rutkowska-Narożniak, A., Pajor, E., & Pochanke, Z. (2011).
Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresource technology,
102(19), 8777-8782.
https://doi.org/10.1016/j.biortech.2011.07.040
Liu, Y., Zhang, Y., & Ni, B. J. (2015).
Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.
Water research,
75, 292-300.
https://doi.org/10.1016/j.watres.2015.02.056
Purdy, A., Pathare, P. B., Wang, Y., Roskilly, A. P., & Huang, Y. (2018).
Towards sustainable farming: Feasibility study into energy recovery from bio-waste on a small-scale dairy farm. Journal of Cleaner Production,
174, 899-904.
https://doi.org/10.1016/j.jclepro.2017.11.018
Puyol, D., Flores-Alsina, X., Segura, Y., Molina, R., Padrino, B., Fierro, J. L. G. & Martínez, F. (2018).
Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process.
Chemical Engineering Journal,
335, 703-711.
https://doi.org/10.1016/j.cej.2017.11.029
Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019).
A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration.
Energies,
12(6), 1106.
https://doi.org/10.3390/en12061106
Sekoai, P. T., Ouma, C. N. M., Du Preez, S. P., Modisha, P., Engelbrecht, N., Bessarabov, D. G., & Ghimire, A. (2019).
Application of nanoparticles in biofuels: an overview.
Fuel,
237, 380-397.
https://doi.org/10.1016/j.fuel.2018.10.030
Su, L., Shi, X., Guo, G., Zhao, A., & Zhao, Y. (2013).
Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production.
Journal of Material Cycles and Waste Management,
15, 461-468.
https://doi.org/10.1007/s10163-013-0150-9
Ugwu, S. N., Biscoff, R. K., & Enweremadu, C. C. (2020).
A meta-analysis of iron-based additives on enhancements of biogas yields during anaerobic digestion of organic wastes. Journal of Cleaner Production,
269, 122449.
https://doi.org/10.1016/j.jclepro.2020.122449
Yazdani, M., Ebrahimi-Nik, M., Heidari, A., & Abbaspour-Fard, M. H. (2019).
Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge.
Renewable Energy,
135, 496-501.
https://doi.org/10.1016/j.renene.2018.12.019
Yin, Q., Yang, S., Wang, Z., Xing, L., & Wu, G. (2018).
Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide.
Chemical Engineering Journal,
333, 216-225.
https://doi.org/10.1016/j.cej.2017.09.160
Zhang, J., Loh, K. C., Lee, J., Wang, C. H., Dai, Y., & Wah Tong, Y. (2017).
Three-stage anaerobic co-digestion of food waste and horse manure.
Scientific reports,
7(1), 1269.
https://doi.org/10.1038/s41598-017-01408-w
Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., & Guo, Y. (2020).
Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism.
Renewable Energy,
146, 2724-2735.
https://doi.org/10.1016/j.renene.2019.08.078
Zhao, Z., Zhang, Y., Li, Y., Quan, X., & Zhao, Z. (2018).
Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion.
Water Research,
144, 126-133.
https://doi.org/10.1016/j.watres.2018.07.028