The current situation and evaluating scenarios and solutions to improve sugarcane transportation to the sugar factory

Authors

1 MSc graduate, Department of Biosystems Engineering, Faculty of Agricultural, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Biosystems Eng.​ Dept. Agricultural Faculty, Shahid Chamran University of Ahvaz . Ahvaz, Iran.

3 Professor, Department of Biosystems Engineering, Faculty of Agricultural, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Associate Professor, Agricultural Machinery Engineering Department, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran

Abstract

This research presents a model for the analysis of sugarcane basket emptying operations. Traffic of sugarcane carrying baskets in front of the factory door will cause a long waiting line to form. Factors influencing the formation of queues include shift changes, accidents due to tractor crowding, tractor breakdowns, and factory shutdowns, which will lead to an increase in the time intervals between harvesting the crop and emptying the canes. Using queuing theory, the relevant system was simulated as a based model and the effect of each of the existing factors on the amount of time wastage and queue formation was evaluated. Based on the three scenarios (the investigation of queuing order, improve the bottleneck by deploying existing or non-existing discharge sources) proposed and the analysis of the system, based on the realization of each of the scenarios, the costs and queue conditions were investigated. According to the investigated cases, it was concluded that both sources in the factory should be used to empty the canes during the peak harvest time. The waiting time of the baskets in the system in the first, second and third scenario has decreased by 2%, 30%, and 59%, respectively, and the exit rate of the baskets has increased by 1.56%, 100%, and 198%, respectively. Comparing the efficiency of the scenarios using TOPSIS method according to the criteria of waiting time and cost showed that the second scenario has the highest rank.

Keywords


افشار­نیا، ف.، مرزبان،ا. 1398. تحلیل فرآیند حمل ساقه نیشکر از مزرعه تا کارخانه با استفاده تئوری صف. تهران. تحقیقات سامانه­ها و مکانیزاسیون کشاورزی. 109- 122.
کشوری، ا. و مرزبان، ا. 1398. اولویت بندی ورود توان تراکتوری در کشاورزی استان خوزستان به روش های تاپسیس و تحلیل سلسله مراتبی فازی. نشریه ماشین‌های کشاورزی. جلد 9. شماره 1. ص 251-235.
مقبل باعرض، ع.، زارعی محمودآبادی، م. 1392. مقدمه‌ای بر سیستم‌های صف. انتشارات دانشگاه یزد. 170 ص.
منجزی، ن.، شیخ داوودی، م. ج.، ذکی دیزجی، ح.، مرزبان، ا. و شمیلی، م. 1396. شناسایی اولویت‌بندی عوامل مؤثر بر عدم انجام به‌موقع عملیات تولید نیشکر با استفاده از تحلیل سلسه مراتبی AHP. نشریه ماشین­های کشاورزی. دانشگاه فردوسی مشهد. جلد 7. شماره 2.: 514- 526
Arifin, m. Z., Probowati, B.D., Hastuti, S. 2015. Agriculture Science Procedia 3.255-262
Bernold, L. E., AbouRizk, S. M., (2010). Managing performance in construction, John Wiley & Sons, New Jersey, USA.
Bobbio, A. 2000. Birth Death Processes and Queueing systems. Anro Accademico.
Bunday, B. D. 1996. An introduction to Queueing Theory. Arnold, London.
Bustani, H. 2005. Fundamental Operation Research. PT Gramedia Pustaka Utama, Jakarta.
Chetthamrongchai, P., Auansakul, A. and Supawan, D., (2001). Assessing the transportation problems of the sugar cane industry in Thailand. Transport and Communications bulletin for Asia and the Pacific: pp.31-39.
Cruz, F. R. B., Duarte, A. R. and Van Woensel, T. 2008. Buffer allocation in general single-server Queuing networks. Comput. Operat. Res. 35, 3581-3598.
David, R. 2005. Optimizing time to overcome queue service solid at fast food restaurant (case study in Mc.Donald's Restaurant, Depok Mall Branch). Ph. D. Thesis. IPB University, Bogor, Indonesia.
Eslami-Baladeh, A. A., Seyed-Esfahani, M. M., Farsi, M. A. and Mahmoudi, M. 2014. A random-based model for redundancy allocation with choice of redundancy strategies. 10th International Industrial Engineering Conference. Jan. 27-28. Tehran, Iran. (in Persian)
Hansen, R. C. 2001. Overall equipment effectiveness: A Powerful Production/ Maintenance Tool for Increased Profits. 1st Ed. Industrial Press Inc.
Iravani, M. R. 2013. Queuing Systems. Queuing Models. Vol. 2. Iran University of Science and Technology Press. Tehran. (in Persian)
Lamsal, K., Jones, P.C. and Thomas, B.W., 2015. Sugarcane Harvest Logistics in Brazil. Transportation Science 51(2). https://doi.org/10.1287/trsc.2015.0650.
Ivo, A. and Resing, J. 2001. Queuing Theory. Eindhoven University of Technology, Netherlands.
Kleinrock, L. 1975. Queuing Systems. Vol. I: Theory. Wiley, New York.
Lamsal, K. 2014. Sugarcane harvest logistics. Ph. D. Thesis. The University of Iowa.
Little, J. D. 1961. A proof of the queuing formula. Opns. Res. 9, 383-387.
Martin-Cejas, R.R., 2006. Tourism service quality begins at the airport. Tourism Management 27(5):874-87. 10.1016/j.tourman.2005.05.005.
Minkevicius, S. 2009. On extreme values in open queuing networks. Mathemat. Comput. Model. 50, 1058-1066.
Newell, G. F. 1971. Applications of Queuing Theory. Chapman and Hall, London.
Noroozi, S., Asoodar, M. A., Marzban, A. and Moradi-Telavat M. R. 2015. Sensitivity comparison of the sugarcane mill delay in Iran. Green sugar cane is more sensitive or burned. Elixir Agric. 85, 34378-34385.
Shomeili, M. 2012. Evaluation of agricultural wastes produced during operation of sugarcane production.CD Proceedings of the 7th conference of Iranian sugar cane technologists. February 21-23. Iran, Ahvaz. (In Farsi).