پیرولیز بستر ثابت گیاه ایفوربیا تیروکالی برای تولید نفت زیستی

Document Type : Research Paper

Authors

1 Department of Biosystems Engineering, Shahrekord University, Shahrekord, Iran

2 Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

چکیده
پیرولیز یا آتشکافت یک روش ترموشیمیایی برای تبدیل زیست توده بوده و آن را به ذغال، نفت زیستی و گاز تبدیل می­کند. روغن زیستی می­تواند به عنوان یک سوخت تجدید­پذیر یا به عنوان ماده شیمیایی با ارزش در صنایع مختلف استفاده شود. همچنین می­توان از ذغال به عنوان سوخت جامد، جاذب ارزان قیمت و تولید مواد اولیه برای مصارف کشاورزی استفاده کرد. در مطالعه حاضر، پیرولیز زیست ­توده حاصل از گیاه ایفوربیا تیروکالی (Euphorbia tirucalli) در یک راکتور بستر ثابت انجام شد. آزمایش ­های پیرولیز برای این مطالعه، به منظور بررسی اثر دما (450 تا530 درجه سلسیوس) بر عملکرد محصولات تولیدی واکنش انجام شد. ویژگی­ های محصولات پیرولیز (نفت و کربن زیستی) با استفاده از روش­های مانند میکروسکوپ الکترونی روبشی انتشار میدانی (FE-SEM) ، طیف ­سنجی اشعه ایکس پراکندگی انرژی (EDX)، تجزیه و تحلیل وزن گرما (TGA) و کروماتوگرافی گازی طیف سنجی جرم (GC/MS) بررسی شد. نتایج نشان داد که با افزایش دما، عملکرد نفت زیستی و گاز افزایش می ­یابد و میزان کربن زیستی کاهش می ­یابد. بیشترین عملکرد نفت زیستی (38 درصد) در دمای 530 درجه سلسیوس بدست آمد. همچنین حداکثر عملکرد گازهای مختلف حدود 39 درصد بود. بالاترین کاهش وزنی در دمای بین 250 تا350 درجه سلسیوس مشاهده شد. مایع اسیدی حاصل، متشکل از ترکیبات شیمیایی از جمله اسیدها، الکل­ها، آلدئیدها، فورفورال، فوران، فنل­ها و برخی مواد معطر دارای رنگ تیره است.
 

Keywords


Abay, B.T., Abrha, W.B., Teklehaimanot, T.G. (2017). Estimation of Biogas Production from Euphorbia tirucalli 5, 918–922.
Augustus, G., Jayabalan, M., Seiler, G.J. (2003). Alternative energy sources from plants of western ghats (Tamil Nadu, India). Biomass and Bioenergy 24, 437–444.
Avelar, B.A., Lélis, F.J.N., Avelar, R.S., Weber, M., Souza-Fagundes, E.M., Lopes, M.T.P., Martins-Filho, O.A., Brito-Melo, G.E.A. ( 2011). The crude latex of Euphorbia tirucalli modulates the cytokine response of leukocytes, especially CD4+ T lymphocytes. Rev. Bras. Farmacogn. 21, 662–667.
Bajpai, P. (2013). Biorefinery in the Pulp and Paper Industry, Biorefinery in the Pulp and Paper Industry.https://doi.org/10.1016/C2012-0-06724-5.
Baquero, G., Esteban, B., Riba, J.-R., Rius, A., Puig, R. (2011). An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture. Biomass and bioenergy 35, 3687–3697.
Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press.
Buijs, N.A., Siewers, V., Nielsen, J. (2013). Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17, 480–488.
Elad, Y., Cytryn, E., Harel, Y.M., Lew, B., Graber, E.R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathol. Mediterr. 50, 335–349.
Frenkel, O., Jaiswal, A.K., Elad, Y., Lew, B., Kammann, C., Graber, E.R. (2017). The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J. Environ. Eng. Landsc. Manag. 25, 105–113.
Gautam, N., Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 190, 116434.
Ghorbannezhad, P., Dehghani Firouzabadi, M., Ghasemian, A.( 2018a). Catalytic fast pyrolysis of sugarcane bagasse pith with HZSM-5 catalyst using tandem micro-reactor-GC-MS. Energy Sources, Part A Recover. Util. Environ. Eff. 40, 15–21. https://doi.org/10.1080/15567036.2017.1381785
Ghorbannezhad, P., Firouzabadi, M.D., Ghasemian, A., de Wild, P.J., Heeres, H.J. (2018b). Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). J. Anal. Appl. Pyrolysis 131, 1–8. https://doi.org/10.1016/j.jaap.2018.02.019
Gogoi, S., Bhuyan, N., Sut, D., Narzari, R., Gogoi, L., Kataki, R. (2020). Agricultural wastes as feedstock for thermo-chemical conversion: products distribution and characterization, in: Energy Recovery Processes from Wastes. Springer, pp. 115–128.
Gonçalves, E.V., Teodoro, C., Seixas, F.L., Canesin, E.A., Olsen Scaliante, M.H.N., Gimenes, M.L., De Souza, M. (2017). Pyrolysis of sugarcane bagasse in a fixed bed reactor: Influence of operational conditions in the distribution of products. Can. J. Chem. Eng. 95, 2249–2257.
Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M., Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage. 118, 196–204.
Harel, Y. M., Elad, Y., Rav-David, D., Borenstein, M., Shulchani, R., Lew, B., Graber, E.R. (2012). Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357, 245–257.
Hassan, M.A., Ahmad Farid, M.A., Shirai, Y., Ariffin, H., Othman, M.R., Samsudin, M.H., Hasan, M.Y. (2019). Oil palm biomass biorefinery for sustainable production of renewable materials. Biotechnol. J. 14, 1800394.
Ingle, A.P., Chandel, A.K., da Silva, S.S. (2020). Biorefining of Lignocellulose into Valuable Products. Lignocellul. Biorefining Technol. 1–5.
Kapdan, I.K., Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569–582.
Khaleghian, A., Nakaya, Y., Nazari, H. (2011). Biodiesel production from Euphorbia tirucalli L. J. Med. Plant Res. 4968–4973.
Komkiene, J., Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium (II), Copper (II), Lead (II), Zinc (II)] from aqueous phase. Int. J. Environ. Sci. Technol. 13, 471–482.
Luque, R., Clark, J. (2010). Handbook of biofuels production: Processes and technologies. Elsevier.
Maache-Rezzoug, Z., Pierre, G., Nouviaire, A., Maugard, T., Rezzoug, S.A. (2011). Optimizing thermomechanical pretreatment conditions to enhance enzymatic hydrolysis of wheat straw by response surface methodology. Biomass and bioenergy 35, 3129–3138.
Mkhize, T., Mthembu, L.D., Gupta, R., Kaur, A., Kuhad, R.C., Reddy, P., Deenadayalu, N. (2016). Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse. BioResources 11, 6267–6285.
Mwine, J., Van Damme, P., Hastilestari, B.R., Papenbrock, J. (2013). Euphorbia tirucalli L.(Euphorbiaceae)–the miracle tree: current status of knowledge, in: African Natural Plant Products Volume II: Discoveries and Challenges in Chemistry, Health, and Nutrition. ACS Publications, pp. 3–17.
Qureshi, N., Hodge, D.B., Vertes, A.( 2014). Biorefineries: integrated biochemical processes for liquid biofuels. Newnes.
Rajasekaran, P., Swaminathan, K.R., Jayapragasam, M.(1989). Biogas production potential of Euphorbia tirucalli L. along with cattle manure. Biol. wastes 30, 75–77.
Rajeswari, B., Kumar, P.S., Sharma, A., Sahoo, P.K., Khan, P.S.S.V. (2013). Effect of C-5 and C-10 fuel blends of Euphorbia caducifolia Haines on IC diesel engine emissions. Int. J. Adv. Eng. Technol. 6, 1177.
Rosendahl, L. (2013). Biomass combustion science, technology and engineering. Elsevier.
Sake, K., Bugude, R., Reddy, V.L., Khan, P. (2013). Production of bioethanol from spent residues of latex yielding plants Euphorbia antiquorum L and Euphorbia caducifolia haines. Int. J. Recent Sci. Res. 4, 1–4.
Singh, R., Tiwari, S., Srivastava, M., Shukla, A.             (2014). Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. J. energy 2014.
Suriapparao, D. V, Vinu, R. (2018). Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and biomass valorization 9, 465–477.
Taghizadeh-Alisaraei, A., Hosseini, S.H., Ghobadian, B., Motevali, A. (2017). Biofuel production from citrus wastes: A feasibility study in Iran. Renew. Sustain. Energy Rev. 69, 1100–1112.
Taghizadeh-Alisaraei, A., Motevali, A., Ghobadian, B. (2019). Ethanol production from date wastes: Adapted technologies, challenges, and global potential. Renew. Energy 143, 1094–1110.
Valadares, M.C., Carrucha, S.G., Accorsi, W., Queiroz, M.L.S. (2006). Euphorbia tirucalli L. modulates myelopoiesis and enhances the resistance of tumour-bearing mice. Int. Immunopharmacol. 6, 294–299.
Varma, A.K., Mondal, P. (2018). Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J. Therm. Anal. Calorim. 131, 2057–2072.
Varma, A.K., Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 95, 704–717.
Vieira, F.R., Luna, C.M.R., Arce, G.L.A.F., Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy 132, 105412.
Wang, T., Meng, D., Zhu, J., Chen, X. (2020). Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel 264, 116909. https://doi.org/10.1016/j.fuel.2019.116909
Winsley, P. (2007). Biochar and bioenergy production for climate change mitigation. New Zeal. Sci. Rev. 64, 5–10.
Xu, P., Sun, C.X., Ye, X.Z., Xiao, W.D., Zhang, Q., Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100.
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.
Zhan, S., Chenguang, W., Kang, B., Xinghua, Z., Chiling, Y., Renjie, D., Longlong, M., Changle, P. (2017). Py-GC/MS study of lignin pyrolysis and effect of catalysts on product distribution. Int. J. Agric. Biol. Eng. 10, 214–225.
Zhang, W.K., Xu, J.K., Zhang, X.Q., Yao, X.S., Ye, W.C. (2008). Chemical constituents with antibacterial activity from Euphorbia sororia. Nat. Prod. Res. 22, 353–359.
Zoia, L., Salanti, A., Tolppa, E.-L., Ballabio, D., Orlandi, M. (2017). Valorization of side-streams from a SSF biorefinery plant: Wheat straw lignin purification study. BioResources 12, 1680–1696.